The UN estimates rapid population growth with additional 2-3 billion people globally by 2050. To feed this swelling population, food production needs to scale up by 70%, otherwise we are likely to be at risk of a global food crisis. With resources becoming scarce and climate change diminishing crop production by 2% per decade, food production methods need radical transformation and technology could be the possible solution to it. Using technology in farms and fields holds extraordinary promise of helping the agriculture sector become more efficient, productive, and sustainable.
Population increase, resource limitations, and climate change are putting pressure on farmers to produce more with less. To boost production it is essential to efficiently manage farm inputs such as seeds, fertilizers, and pesticides, optimize sowing and harvesting cycles, monitor field data (soil condition, plant stress, etc.) for improved crop yield, among others. However, managing these inputs is cumbersome and laborious without consistent and precise monitoring. Unfortunately, many farmers still rely on guess work and traditional processes instead of actual data to make all farming decisions. Technology could prove useful by helping farmers to closely monitor all farm activities and take informed data-driven decisions to improve production levels.
Technology can offer relief to pressures in agriculture
Emerging technologies such as weather tracking, robotics, and Internet of Things (IoT) can consistently monitor every aspect of agriculture such as soil fertility, health of farm animals, temperature and humidity conditions, optimal time to sow and harvest, schedule chemical application on fields, analyze irrigation requirements, among several other functions.
Weather forecast-based predictive modelling
Weather is a crucial determinant to ascertain the best time to sow, fertilize, spray, irrigate, and harvest crops. About 90% of crops losses are due to weather events and 25% of those losses could be avoided by using weather forecast-based predictive modelling on farms. Integrating weather forecast models with farming practices could enable better decision-making and improve crop yield. Companies such as John Deere, Ignitia, etc., already offer comprehensive weather-based farming solutions.
Robotics
Robotics is another emerging technology gaining traction in the agriculture sector. With robots capable of executing all functions from sowing to harvesting, they could easily replace human labor in the foreseeable future, particularly, at a time when some countries are facing labor shortage. For instance, in 2017, the UK suffered from 20% shortfall in migrant labors, which was mostly blamed on the Brexit vote that has made the UK unattractive for overseas workers to seek employment. The labor shortage is likely to get worse in 2018, making harvesting at labor-intensive vegetable and fruit fields difficult. Hence, some farms across the UK are considering to employ farm robots for vegetable and fruit picking.
Robots are also far more efficient than human labor, which is the key requirement to boost food production – each Harvest CROO Robotics’ robot (made by a US-based company that develops robots for the agriculture sector) is capable of harvesting eight acres in a day, which is equivalent to the work of 30 human pickers.
Internet of Things
Further, IoT has gained significance across several industries and has now entered the farms. IoT is turning farms into a mesh of smart sensors connected in a network, with the help of which every granular detail of crop, soil, livestock, or farm can be analyzed, thus, enabling farmers to devise smart cropping techniques and farming methods. IoT can streamline farming processes, reduce water consumption, and improve production and bottom lines.
EOS Perspective
Eventually, the growing population will put pressure on food supply. In such a scenario, digital farming is the best possible solution to escape the looming food crisis. Technology promises improved communication systems, precise monitoring devices, recommendations that could improve all processes between sowing and harvesting, and efficient livestock monitoring, among others, that could boost agricultural yields, reduce food wastage, decrease the inputs or resources needed per unit of output, and ensure sustainable farming practices.
However, most farmers have not adopted digital farming solutions and the use of technology is far from being a mass phenomenon yet. Cost is the most significant barrier to adoption, with most farms unable to bear the high upfront costs. Another common challenge is the lack of robust communication and internet network in rural areas as well as the absence of awareness and skills among farmers to apply technologies in farms.
Most farmers have not adopted digital farming solutions and the use of technology is far from being a mass phenomenon yet. Cost is the most significant barrier to adoption.
Consequently, the development of digital farming will require commitment and intervention by governments across the world, to offer incentives and cover the substantial start-up costs. Fortunately, few organizations have already started undertaking initiatives to tackle challenges. For instance, Mimosa Technology (a Vietnam-based IoT solution provider for agriculture sector) leases IoT-based hardware devices to farmers’ cooperatives in Vietnam to lessen the cost burden for smallholder farmers.
Initiatives are also being taken to ensure network connectivity and improve digital literacy in remote/rural areas – for example, governments of Thailand, India, or the UK, to name a few, are planning to boost digital connectivity in rural areas.
Eventually, technological innovations can be expected to make farming practices precise and to improve output. The use of digital farming solutions is an answer to the probable food crisis but for it to succeed, a mass adoption of technology across farms is a necessity. With growing awareness of benefits of automation in fields and efforts made by various organizations and governments to overcome challenges, digital farming would sooner than later transform the agriculture sector.
Brief description of companies and projects:
- CropX: A USA-based agriculture-analytics company
- CLAAS: A Germany-based agricultural machinery manufacturer
- SmaXtec: An Austria-based provider of solutions to monitor livestock
- Farmers Edge: A Canada-based company offering digital solutions for agriculture
- The Weather Company: A USA-based weather forecasting and information technology company, a part of IBM
- John Deere: A USA-based manufacturer of machinery for agriculture, construction, and forestry
- Ignitia: A Sweden-based weather forecasting company
- Robot Thorvald (to be launched): A robot developed by Saga Robotics, a Norway-based manufacturer of robots
- Deepfield robotics: Robots developed by Bosch, a Germany-based engineering and electronics company
- Hands Free Hectare: A project developed by Harper Adams University and Precision Decisions
- Robot Agbot: A robot designed and built by QUT (an Australian university) with support from the Queensland Government