• SERVICES
  • INDUSTRIES
  • PERSPECTIVES
  • ABOUT
  • ENGAGE

LIFE SCIENCES

by EOS Intelligence EOS Intelligence No Comments

Personalized Image-Guided Therapy: Medicine’s New Crystal Ball?

Precision and personalized care are becoming the keys to unlocking better patient care in modern medicine. With personalized medicine image-guided therapy (IGT) systems offering physicians better control over therapy decisions, the healthcare industry hopes discomfort and uncertainty will give way to reliability and healing.

IGT enhances surgical precision and treatment management

IGT is an approach that uses various imaging technologies to plan, perform, and evaluate surgical procedures and treatments. There are two main groups: traditional surgeries enhanced by imaging technology and newer procedures that use imaging and specialized instruments to treat internal organs and tissues without surgery.

The IGT systems, such as Dutch Philips’ Azurion and American Varian’s Halcyon, help improve minimally invasive procedures by offering real-time imaging support during interventional techniques, especially in cardiology and oncology. They also aid in precise navigation and treatment delivery.

Azurion’s IGT system offers various clinical suites, including Coronary, Onco, and Neuro suites, tailored to a particular surgery. This customization can make a surgeon’s work easier. Many IGT systems also integrate with hemodynamic systems and similar interventional tools that give surgeons more information.

On the other hand, advanced imaging platforms such as the 1788 visualization platform by US-based Stryker, TIVATO 700 by Germany-based Zeiss, and VISERA ELITE II by US-based Olympus specifically work in open surgical settings, providing high-definition imaging that enhances visibility during more invasive procedures.

IGT employs imaging modalities and technological innovations for disease management

The most commonly used imaging modalities in IGT are X-rays, ultrasound, MRI, and CT scans, which provide detailed cross-sectional images of the body. Other supporting technologies include angiography, ultrasound, tracking tools, surgical navigation systems, and integration software.

IGT also offers invaluable insights into disease diagnosis and management of minimally invasive procedures. Significant advancements have been made in this field in recent years owing to developments and integration of innovations such as artificial intelligence (AI), big data, deep learning, sensor fusion, and advanced signal processing.

Personalized Image-Guided Therapy Medicine's New Crystal Ball by EOS Intelligence

Personalized Image-Guided Therapy Medicine’s New Crystal Ball by EOS Intelligence

IGT and advanced visualization systems complement each other in cancer surgeries

Applying advanced visualization systems for open cancer surgeries adds a competitive aspect to the image-guided therapy landscape. Systems such as Stryker’s 1788 have the potential to be a viable option in low-resource environments or hybrid surgical settings. Such facilities may view it as a cost-effective and simpler substitute for comprehensive IGT systems for certain cancer surgeries.

The competition could also intensify in niche applications where minimally invasive tumor resection overlaps with interventional oncology. This is especially true for hospitals that aim for a one-stop surgical solution without high investment in IGT infrastructure.

However, the IGT systems have a different clinical role, being particularly effective in procedures such as catheter-based interventions or radiotherapy, where accurate imaging is extremely critical. Therefore, the competition may be nuanced, depending on the specific surgical approach, as the two technologies could also complement each other by providing tailored solutions for distinct surgical techniques and scenarios.

IGT sector is rapidly growing in minimally invasive and specialized procedures

The IGT market has seen rapid development, especially in the post-pandemic era. The global IGT systems market was US$5.5 billion in 2023 and is estimated to reach US$8.9 billion by 2032, according to an India-based market research firm, IMARC. The company also forecasts the market to grow at a CAGR of 5.4% from 2024 to 2032.

Several factors drive this growth, including IGT’s ability to offer better health outcomes in treating severe conditions such as cancer, its application in treating old age-related conditions, such as stroke and vessel blockage, and the surge in demand for minimally invasive procedures.

Rising cancer cases are boosting sector growth

The American Cancer Society estimates that approximately 20 million new cancer cases were diagnosed, and 9.7 million people died from cancer worldwide. The number of cancer cases is expected to reach 35 million by 2050. The high prevalence of cancer has increased the need for innovative treatment options with limited damage to healthy cells. Oncologists and patients are now opting for IGT, such as image-guided surgeries and radiotherapy, to treat cancers, including severe and complex ones.

For example, hepatocellular carcinoma, the most common liver cancer, is a challenging disease to treat. A 2010 study published in Insights into Imaging, a peer-reviewed open-access journal, indicated that due to the advanced stage of the disease at diagnosis and limited donor availability, only 10–15% of HCC patients are eligible for surgical resection or liver transplantation. Surgical options are primarily reserved for patients with solitary, asymptomatic HCC and well-preserved liver function without significant portal hypertension or elevated bilirubin levels. Also, systemic chemotherapy has largely been ineffective for HCC.

Image-guided procedures can offer doctors detailed imaging data to aid diagnosis, patient risk assessment, and treatment planning during the early detection stages. Image-guided catheter-based techniques are used for treating larger lesions or more extensive liver involvement seen in intermediate-stage HCC, and ablative procedures are employed for early-stage HCC.

Minimally invasive image-guided therapies can also extend survival, preserve more healthy liver tissue (crucial for cirrhotic patients), allow for potential retreatment, and serve as a bridge to transplantation.

Growing geriatric population is also contributing to sector expansion

The rising geriatric population is also driving the need for image-guided therapies. UN estimates there were 761 million people aged 65 or older globally in 2021. This number is expected to rise to 1.6 billion in 2050. Age is a significant factor in determining the likelihood of developing serious conditions such as cancer. According to the National Cancer Institute (NCI), the average age of individuals diagnosed with cancer is 66, indicating approximately half of all cancer cases are diagnosed in people aged 66 and older.

Older people are also at a higher risk of suffering from severe post-procedural complications, especially in the case of invasive surgeries. IGT-supported therapies, especially minimally invasive surgeries, can help doctors treat geriatric patients with limited adverse effects.

Advancements in minimally invasive procedures and cancer radiotherapy are on the rise

The rising demand for minimally invasive procedures is another factor driving the increasing adoption of IGT systems. A 2015 study published in JAMA Network, an open-access medical journal, indicated that minimally invasive surgeries have fewer postoperative complications, provide better outcomes, and reduce healthcare costs. This has prompted many physicians and patients to choose IGT system-based minimally invasive therapies in treating complicated conditions that may otherwise require longer hospital stays and repeat visits.

The growing number of developments in cancer radiotherapy is also an important factor propelling the IGT market forward. AI in radiation therapy enhances the accuracy and precision of treatment. In image-guided radiotherapy (IGRT), AI-based algorithms are used to analyze images taken during treatment and make adjustments to the treatment plan in real time. This enables clinicians to target tumors with greater precision, reduce the amount of irradiated healthy tissue, and improve treatment outcomes.

Several premier institutions, such as Cancer Research UK, London-based Medical Research Council (MRC), and US-based Stanford Medicine, are involved in cancer radiotherapy research to develop cancer imaging, diagnostics, and minimally invasive treatment platforms. With the radiotherapy market will likely reach US$12.51 billion by 2029, according to a 2024 report by India-based market research firm Mordor Intelligence, these efforts can contribute to the growth of the IGT sector.

IGT therapies allow for prompt and low-risk interventions

The introduction of IGT into personalized medicine has had a crucial impact on patient outcomes. IGT enables healthcare professionals to diagnose and treat serious conditions more rapidly. This prompt initiation of treatment reduces the risks associated with delayed interventions.

An example of an IGT system offering better treatment management is Philip’s Azurion Lung Edition, a 3D imaging and navigation platform that streamlines the diagnosis and treatment of lung cancer. The system combines tableside CT-like images with real-time X-ray guidance and advanced tools to support guided procedures. It is specifically designed for bronchoscopy procedures and enables clinicians to perform minimally invasive biopsy and lesion ablation in a single procedure. This reduces the need for additional procedures and speeds up diagnosis.

IGT systems also offer a precise, real-time visualization of the therapy site, enabling highly targeted interventions. This level of accuracy can minimize complications and failures during procedures. For example, IGRT used in cancer treatment enables oncologists to target tumors while sparing healthy tissues precisely, reducing side effects and boosting treatment success rates. Surgeons also better comprehend spatial relationships between the tumor and vital organs or blood vessels when they can access high-resolution images highlighting the essential structures during the procedure.

Minimally invasive nature of IGT therapies minimizes complication and disability risks

IGT procedures are minimally invasive in nature. This reduces the trauma caused by the procedure, reducing the risk of complications. Patients can recover faster from IGT procedures, reducing hospital stays and lowering the likelihood of hospital-acquired infections and other potential complications. A 2022 study published in the National Library of Medicine’s (NLM) online portal indicated that image‐guided procedural techniques reduce risks, prompt faster recovery, and shorten hospital stays.

IGT’s minimally invasive nature also reduces the risk of disability post-treatment. In the case of complicated surgeries such as brain tumor removal, surgeons use techniques such as intraoperative MRI (iMRI) to get a detailed map of the tumor and surrounding brain structures before and during surgery. This allows for more precise resection of the tumor and reduces the risk of injury to critical brain areas, thereby lowering the possibility of neurological damage and associated disabilities. A 2014 article published in NLM’s online portal indicated that using iMRI improved surgical outcomes, including increased tumor resection and survival rates and decreased risk of neurological deficits.

IGT systems offer interventional tools supporting surgeons in complex procedures

Advanced IGT systems now come with integrated interventional tools, which can be especially beneficial during complex or delicate procedures. For example, Azurion, an IGT platform developed by Philips, has interventional tools integrated into the imaging system. It offers procedure cards that allow clinicians to pre-program routine tasks and preferences, as well as an interface for performing various procedures in interventional labs.

Integrations such as these can help surgeons make informed and data-driven decisions during procedures, allowing them to make mid-procedure adjustments. Such flexibility is crucial, particularly in complex surgeries or when treating conditions such as cardiovascular diseases.

Development high costs and cybersecurity issues hinder adoption

Despite offering numerous benefits to patients, the developers of IGT systems face several challenges.

Huge R&D costs and market competition are impacting new players

The significant financial burden of research and development in this field is one major obstacle for companies, especially newer ones entering the market with limited budgets. Developing advanced imaging technology that seamlessly integrates with therapeutic tools requires substantial investments in software and hardware.

Also, these systems require continuous refinement to ensure optimal accuracy and adaptability, as they must be able to accommodate diverse patient anatomies and conditions. This is a time-consuming and costly process. Consequently, only established companies with significant R&D budgets may be able to compete in the market.

Not just the R&D budget but also leading players’ brand equity is a significant challenge for new players trying to enter the IGT systems market. The newer entrants face intense competition from established players such as Philips, GE Healthcare, and Siemens. These companies have been in the market for years and have a strong foothold in terms of market share and brand recognition. This can make it challenging for new players to establish themselves in the sector, limiting innovation and market growth.

New companies can attempt to tackle this and make inroads into the market by forming partnerships with hospitals and public health initiatives to drive the adoption of their IGT systems.

High upfront costs are affecting the widespread adoption of IGT devices

The IGT devices’ market prices reflect the high R&D costs. Almost all IGT systems have high upfront costs. For example, an interventional radiology suite can cost anywhere between US$1 million to over US$3 million, depending on its sophistication. This can make acquiring and implementing IGT systems prohibitively expensive for many healthcare providers, particularly smaller or publicly funded organizations.

While healthcare providers can pass on the cost to patients, it can also cause many other challenges. Even with insurance coverage, some patients may not be able to afford certain procedures or treatments when the out-of-pocket expenses are significant. Consequently, this can reduce the overall demand for IGT devices, negatively impacting sales for manufacturers.

Companies can try tackling this issue by offering price flexibility and discounts for large orders or entering into long-term contracts with healthcare providers to help maintain demand. They may also offer leasing or subscription-based payment models instead of selling devices outright. This could encourage purchases by healthcare providers, allowing them to spread out the costs over time and lighten the upfront financial burden on patients.

Cybersecurity challenges are threatening patient care and security

Another significant challenge in adoption is cybersecurity and data management issues. A 2024 fact sheet by the US Office of the Director of National Intelligence indicated that there has been a 128% increase in healthcare ransomware attacks in 2023 over 2022 in the USA. As a result of these attacks, American hospitals have faced disruptions to medical procedures, patient care, and operations, including delayed procedures, diverted patients, rescheduled appointments, and strained acute care provisioning.

IGT systems generate and store vast amounts of imaging and procedural data on the cloud. Any security breach can lead to privacy leaks and misuse of patient data. Attackers can also maliciously embed images or reports and manipulate medical images, thereby delaying procedures and patient care and causing loss of life. This complexity often leads to hesitation in adoption, particularly for institutions that lack the necessary IT infrastructure.

Many companies are addressing this issue by creating devices with secure design and in-depth defense approaches. An example is Philip’s Azurion, which offers a six-layer protection to combat cyberattacks.

EOS Perspective

IGT systems promise to improve patient outcomes and revolutionize healthcare in the long run, particularly in treating serious medical conditions such as cancer. While there are some challenges to address in order to strengthen widespread adoption, with rapid developments underway in technologies such as AI and augmented reality, IGT can play a greater role in disease treatment in the coming years.

Currently, studies are underway using AI and machine learning to predict the response to minimally invasive image-guided therapies. Similarly, AI-based algorithms are also being developed to monitor tumor motion, reduce treatment uncertainty, and improve treatment precision.

One promising direction new entrants can push for is more portable and cost-effective IGT solutions. Research to miniaturize imaging devices and develop affordable hardware could make IGT systems more accessible to a broader range of healthcare providers, even those in remote areas, thereby expanding the market. Also, as costs come down and standardization improves, hospitals and clinics of varying sizes will be more likely to invest in IGT technologies.

In the short term, larger, well-funded players are likely to continue to lead the way in adopting and refining IGT systems. These companies have the resources to invest in technology and training, enabling them to push the boundaries of personalized medicine. However, as the technology matures and becomes more affordable, smaller players will increasingly be able to capture a market share.

by EOS Intelligence EOS Intelligence No Comments

Mind over Matter: How Non-invasive Neuromodulation Is Becoming the Future of Pain Management and Beyond

Scientists have been researching the possibility of using electrical impulses to treat many health conditions. The starting point was the introduction of the first TENS (transcutaneous electrical nerve stimulation) device in the 1970s in the USA. Its goal was to test the tolerance of chronic pain patients to electrical stimulation. In recent years, non-invasive neuromodulation has emerged as a promising field for treating various neurological disorders. This field will likely experience significant growth in the coming decade, thanks to technological advancements, such as AI-powered sophisticated wearables.

Non-invasive neuromodulation is emerging as a novel treatment for several diseases

Non-invasive neuromodulation is a technique that uses external devices to apply electromagnetic fields, electrical currents, or other forms of stimulation to the brain to enable targeted modulation of neural activity.

The technique is effective in treating a range of conditions. Currently, several devices are available in the market for treating illnesses, including chronic pain, tinnitus, diabetic neuropathy, and functional disorders such as bladder and bowel control.

The non-invasive neuromodulation market encompasses a diverse array of devices that can modify neural activity without the need for invasive procedures. This includes transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and TENS.

TMS therapy sessions typically require the presence of a physician. An example is MagVenture Pain Therapy, a TMS device developed by a Denmark-based company, MagVenture, for treating chronic pain.

TENS and tDCS devices are portable and, hence, suitable for at-home treatments. The FDA has not yet approved tDCS in the USA for medical use. However, its use falls under the Investigational Device Exception (IDA) regulations. Though it is marketed for non-medical uses in the USA, it is used for medical treatment in regions such as the EU, Singapore, and Israel.

TENS devices are small, battery-powered devices that consist of leads that connect to electrodes, sticky pads placed on the skin in the area that needs stimulation. An example is Cefaly, an FDA-approved TENS device developed by the US-based Cefaly Technology for pain management. This device works by stimulating and desensitizing the primary source of migraine pain, the trigeminal nerve, using a precise electrical impulse.

Mind over Matter How Non-invasive Neuromodulation Is Becoming the Future by EOS Intelligence

Mind over Matter How Non-invasive Neuromodulation Is Becoming the Future by EOS Intelligence

The non-invasive neuromodulation market is showing rapid growth

The global non-invasive neuromodulation devices market for neurological and psychiatric disorders was approximately US$1.2 billion in 2022. According to a 2023 report by Report Prime, an India-based market research firm, the market is projected to grow at a CAGR of 7.2% from 2023 to 2030, reaching US$2.1 billion by 2030.

Several reasons fuel this rapid growth in recent years, including the increasing prevalence of chronic pain and other neurological conditions (especially in older patients), the numerous advantages this technique has over invasive neuromodulation, breakthroughs in non-invasive technology, and a surge in investments.

Increasing incidence of neurological disorders is a major driver

The increasing incidence of debilitating disorders such as chronic pain, Parkinson’s disease, diabetic neuropathy, etc., is creating a pressing need for new and efficient treatments to address these conditions. A 2023 study by the CDC indicated that 20.9% of American adults suffered from chronic pain, and 6.9% experienced chronic pain that significantly limited their daily activities.

Similarly, Parkinson’s disease affects nearly 1 million people in the USA as of 2023, with this number expected to rise to 1.2 million by 2030. These statistics indicate a rising trend of neurological disease burden in the USA.

One major issue that many patients and physicians face is that the current treatments for many of these conditions fall short, leaving a significant gap in the care of patients. Typically, doctors treat people suffering from chronic pain, including that of diabetic neuropathy, using painkillers. Most patients develop medicine tolerance, experience drug-wearing-off effects, or suffer from severe side effects, diminishing the overall treatment effectiveness.

Some patients may even consider drastic and irreversible surgical procedures, such as nerve amputation, due to inadequate treatment results. However, even these may not always provide the desired relief. This indicates the need for a reliable and effective solution for managing the pain, discomfort, and other neurological symptoms associated with the primary disease.

As non-invasive neuromodulation stimulates the brain areas responsible for pain processing, it alters the patient’s perception of pain. With the growing incidence of neurological disorders, this desired neuromodulation effect will continue to be in high demand, contributing to the growth of the non-invasive neuromodulation devices market.

Non-invasive treatments offer advantages over other techniques

Typically, conditions such as chronic pain are treated using a combination of prescription medicines. However, these medications, including NSAIDs, opioids, etc., come with a variety of side effects, such as digestive issues, ulcers, drowsiness, etc. Long-term use of opioids can lead to a range of negative consequences, including the development of tolerance, physical dependence, and opioid use disorder, increasing the risk of overdose and death. Conventional treatment methods also need frequent hospital visits.

Invasive neuromodulation is an effective treatment option for various neurological conditions. However, it also carries significant risks, such as site infections, perioperative and postoperative complications, blood clots, and device malfunctions. Additionally, these techniques often require multiple hospital visits.

In contrast, non-invasive neuromodulation offers several advantages over invasive methods. These wearable devices provide drug-free treatments that do not require surgery or complex installation. As a result, they are easy for patients and physicians to use.

A comprehensive study about the efficacy of various non-invasive devices is not yet available. However, controlled individual studies by companies and developers have shown promising efficiency in treating various diseases.

Moreover, a 2019 report published in BMJ, a peer-reviewed medical journal, indicated that non-invasive neuromodulation offers a potential solution for patients who are sensitive to traditional treatments. This includes patient groups such as pregnant women, adolescents, and those who experience poor tolerability or lack of efficacy from pharmacological treatment therapies.

The need to treat health conditions of these patient groups may drive the use of non-invasive devices to treat health conditions.

Scientific advancements help improve efficacy and expand applications

The non-invasive neuromodulation field has seen several breakthroughs in recent years, showing promise for accelerated R&D and new and improved devices potentially entering the market in the future.

One example is the proprietary magnetic peripheral nerve stimulation (mPNS), marketed as Axon Therapy, developed in 2023 by US-based Neuralace Medical for managing painful diabetic neuropathy.

Another example is vibrotactile stimulation (VTS), currently under development by an interdisciplinary research team from the University of Minnesota as a treatment for spasmodic torticollis or cervical dystonia. This is a painful neurological condition that affects the neck. Though the product is not yet marketable, the clinical trials are showing significant promise.

VTS devices are also being developed for conditions other than pain. An example is the VTS glove, a wearable device developed by researchers at Stanford University and the Georgia Institute of Technology in 2024. The device applies high-frequency vibrations to the hands and fingers to relieve uncontrollable arm and hand spasms. In clinical trials, patients who used the device experienced significant improvements in symptoms, with some even reporting a reduction in their use of oral medications. The team is now working to develop the device further and make it available to patients as a publicly available therapy.

Furthermore, a new treatment for tinnitus, known as bimodal neuromodulation, which involves stimulating two sensory pathways in the brain, has been developed. Ireland-based company Neuromod offers the Lenire device, which combines headphones and a mouthpiece to deliver auditory and tactile stimuli to alleviate symptoms. Patients wear the device for an hour daily, for at least six weeks, to stimulate the tongue with electrical impulses while listening to tones.

These new developments are likely to give momentum to the ongoing R&D in the sector.

Increased investment signals growing market potential

The sector has also seen an uptick in investments. For example, Nalu Medical, a US-based company, secured US$65 million in funding in 2024 to advance its neurostimulation technology for treating chronic pain.

Similarly, Avation Medical, a US-based company focusing on treating bladder issues, raised over US$22 million in 2024 to launch the Vivally System. This wearable device treats patients with urge urinary incontinence (UUI) and overactive bladder (OAB) syndrome.

Massachusetts–based Cognito Therapeutics, a company focused on developing a new therapy for Alzheimer’s disease, raised around US$73 million in 2023.

This increasing trend in R&D investments shows investors’ rising interest in the field of non-invasive neuromodulation, indicating promising market prospects.

Integration with AI is expected to pave the way for future developments

Non-invasive neuromodulation is seeing considerable success in developing closed-loop systems that leverage artificial intelligence (AI) and machine learning (ML) to give customized therapeutic output. This trend is likely to see more growth, especially with the rapid advancements in the field of AI.

An example is Avation Medical’s Vivally System, a wearable neuromodulation device that uses closed-loop, autonomously adjusted electrical stimulation to treat patients with UUI and OAB syndrome. The device uses a smartphone app to calibrate itself for each patient and then delivers a constant current of electrical stimulation through a wearable garment. It also uses an advanced AI-powered closed-loop algorithm and electromyography (a medical test that measures the electrical signals sent by nerves to muscles and received back from them) to enable continuous real-time monitoring and therapy adjustment, ensuring uniformity and safety.

Non-invasive neuromodulation device companies are forming partnerships with research institutes to develop safe ways to treat various disorders using generative AI neuromodulation.

One such collaboration started in June 2024 between US-Swiss generative neuromodulation firm, Dandelion Science and Geneva-based research institute Wyss Center for Bio and Neuroengineering. The goal is to develop a generative AI neuromodulation platform for treating neurodegenerative and neuropsychiatric disorders.

Similar collaborations are likely to commence in the future, as it is clear that the combination of neuromodulation and AI is set to impact various treatment fields significantly.

Expansion of insurance coverage could boost treatment accessibility

Conventionally, chronic pain treatment involves a combination of drugs and physical therapy. The US patient usually pays 20% of their Medicare-approved amount. People with severe pain spend about US$7,700 on annual healthcare expenditures, and with insurance, they have to spend around US$1,600 annually. For the management of pain conditions such as migraine, the out-of-pocket expense can increase to 30% of their Medicare-approved amount.

Non-invasive neuromodulation treatment has proved to be more cost-effective than conventional treatments. Although many non-invasive pain management devices are not covered by insurance, some are eligible for reimbursement.

For instance, Nerivio, a wearable device for treating migraine, is covered by Medicaid and Highmark Insurance. Moreover, Theranica, Nerivio’s Israel-based parent company, introduced the Nerivio Savings Program in October 2020 to help US patients access the device. It is a reimbursement plan that allows patients to receive their first device for a copay of up to US$49 (for 18 treatments), depending on their insurance coverage. The refill costs US$89 for those without insurance.

Additionally, patients may be able to use Health Savings Accounts (HSAs) or Flexible Spending Accounts (FSAs) to pay for specific approved devices. An example is Cefaly, for which, though not covered by insurance in the USA, consumers can use HSA and FSA funds or finance their purchase with Affirm (a US-based financial technology company that offers flexible payment options) for US$36 per month upon qualifying. Without insurance or other financial aid, the upfront cost varies from US$330 to US$430, and an additional US$25 for three reusable electrodes, each usable up to 20 times each.

Non-invasive neuromodulation devices’ high upfront cost remains the key barrier to broader adoption 

Overall, non-invasive neuromodulation devices offer a more cost-effective option than other treatments. The most significant barrier for patients opting for non-invasive neuromodulation is the high upfront cost, especially with no insurance coverage.

For example, Israel-based Zida Therapeutics’ Zida Control Sock, a device to treat urinary incontinence, comes with an upfront cost of US$750. Without insurance, many people may find it challenging to cover this cost. This is particularly true for older adults whom conditions such as chronic pain and urinary incontinence affect the most. According to 2023 data released by the US Census Bureau, 14.1% of Americans aged 65 and older live in poverty, making these devices less accessible to them without insurance coverage.

However, this situation may improve as several companies are now in talks to receive insurance coverage for their devices. With an increase in R&D, companies can also offer robust evidence to demonstrate the effectiveness and long-term safety of the devices, prompting insurance companies to provide coverage.

With reimbursement available for companies such as Theranica and Zida, and with several other companies such as Neurovalens planning to enter discussions with insurance providers to achieve reimbursement status, the accessibility has a chance to improve in the near future. This will likely drive adoption in the coming years.

EOS Perspective

Adopting non-invasive devices will likely increase as a standalone treatment and adjunct therapy. While non-invasive treatments currently focus on conditions such as chronic pain, tinnitus, urinary incontinence, etc., experts believe that this will soon expand into other neurological conditions, including ALS, and Parkinson’s disease.

Currently, there are only seven FDA-approved drugs for ALS treatment, all of them with limited effectiveness. The significant unmet need in this field presents a compelling opportunity for non-invasive neuromodulation companies. Cognito Therapeutics and PathMaker Neurosystems are among the few companies conducting feasibility studies and developing non-invasive neuromodulation treatment options for ALS patients.

Research is also underway to develop a non-invasive treatment for Parkinson’s disease, which was previously treated using invasive techniques. Czech Republic-based STIMVIA has reported promising results from its initial pilot study of a new treatment for patients with Parkinson’s disease as an add-on therapy.

Several new non-invasive devices are also in the development pipeline, and their clinical trials are promising. An example that has shown positive results in a pivotal trial is a treatment for improving upper limb function by Netherlands-based ONWARD Medicals.

Non-invasive neuromodulation has the potential to revolutionize the treatment of chronic pain and other neurological disorders. As the field continues to evolve, with advancements in AI-powered wearables and increased investment in R&D, we can expect to see even more innovative solutions emerge in the coming years.

by EOS Intelligence EOS Intelligence No Comments

New Directions in Alzheimer’s Diagnostics: Will Blood Tests Replace CSF and PET?

657views

Around three-fourths of dementia cases continue to remain undiagnosed even though the incidence of Alzheimer’s disease (AD) is rapidly growing across the globe. AD affects about 60-80% of dementia patients worldwide. Early diagnosis of AD is critical in forging beneficial medical care strategies and enhancing patient outcomes. Current AD diagnostic tests, such as cerebrospinal fluid (CSF) and PET scans, are either invasive or associated with side effects and are generally expensive. This calls for developing less invasive, safer, faster, and more accurate AD diagnostics, such as blood tests.

Blood-based tests promise accurate and non-invasive AD diagnosis

Researchers are developing less invasive and less costly blood tests that are likely to be more accurate than contemporary tests. There are currently two types of AD diagnostics blood-based tests: the phosphorylated tau217 (ptau217) test and the amyloid beta (Aβ) 42/40 plasma ratio test.

The ptau217 biomarker has the potential to differentiate AD from other neurodegenerative diseases, as ptau217 levels can be high in AD patients before the onset of clinical symptoms. Studies have proved that ptau217 tests can detect AD early on and monitor disease progression.

The Aβ 42/40 plasma ratio tests detect amyloid beta protein plaques in the brain that cause cognitive impairment. Due to the lack of a certified reference standard for measuring plasma Aβ42 and Aβ40’s absolute values, ptau217 may be better than an amyloid beta ratio test. However, both tests are accurate enough to diagnose AD.

Notably, ptau217 blood tests are believed to give up to 95% accurate results when coupled with CSF tests as against 90% accuracy of CSF when used as a standalone method. At the same time, amyloid beta (Aβ) 42/40 ratio tests are known to give around 80% accuracy in detecting amyloid positivity.

Many laboratories and diagnostic companies have designed or are designing ptau217 assays. C2N Diagnostics, Quanterix, Quest Diagnostics, and Laboratory Corporation of America (LabCorp) offer ptau217 laboratory-developed tests (LDTs).

Low cost of blood-based AD tests can also be a growth-driving factor

A major push towards blood-based AD diagnostics comes from the tests’ lower cost in comparison to PET and CSF. The cost of blood tests typically ranges from US$200 to US$1,500, depending on the test provider.

The cost of PET ranges from US$1,200 to US$18,000, while the average price of CSF tests is around US$4,000 (in both cases, the actual cost depends on the type of facility, location, and the extent of insurance coverage).

As of 2023, Medicare and Medicaid covered PET scans for AD in the USA outside clinical trials. Therefore, AD patients need to pay around 20% of the PET cost, which translates to US$240-US$3,600, even after insurance coverage.

Considering the high share of dementia and AD cases remaining undiagnosed, there is a chance that the lower cost of blood-based tests can help contribute to higher accessibility to testing and ultimately improve the early detection rate.

Large AD diagnostic players partner with smaller ones to develop new tests

In an attempt to develop ptau217 assays, major diagnostics companies tend to recognize the development progress made by smaller players. ALZpath, a novel AD diagnostic solutions provider, is the pioneer of the ptau217 antibody, which helps in the early detection of the disease. Large players such as Roche and Beckman Coulter are enticed by the synergistic opportunities ALZpath offers.

In June 2024, Roche partnered with ALZpath, an early-stage biopharmaceutical company specializing in AD diagnostics, to launch the plasma ptau217 In-Vitro Diagnostic (IVD) test. As per the partnership, Roche will use ALZpath’s ptau217 antibody to design and commercialize an IVD test to detect AD with the help of Roche’s Elecsys platform.

In July 2024, Beckman Coulter also partnered with ALZpath to utilize ALZpath’s proprietary ptau217 antibody to detect AD on Beckman Coulter’s DxI 9000 Immunoassay Analyzer.

AD diagnostics firms receive funding from various sources, including drugmakers

Constantiam Biosciences, a bioinformatic analysis firm, received a US$485,000 Phase 1 SBIR grant (Small Business Innovation Research) from the National Institute on Aging to develop a tool for deciphering risk variants pertaining to AD and related dementias (AD/ADRD) in September 2024.

Biogen and Eli Lilly invested in the Diagnostics Accelerator, a funding initiative started in 2018, at the Alzheimer’s Drug Discovery Foundation (ADDF) in 2020. The Diagnostics Accelerator has invested over US$60 million across 58 projects, most of which are blood tests. In its Q4 2023 earnings call, Biogen emphasized its support for developing tau biomarker diagnostics and pathways. Its partner, Eisai, has invested around US$15 million in C2N Diagnostics and collaborated with IVD companies such as Sysmex, among others. In September 2024, ADDF invested US$7 million in C2N Diagnostics to further develop blood-based AD detection tests.

Other investors have also identified the opportunities AD diagnostic offers. A 2024 market research report by Market Research Future estimated that the AD diagnostic industry would nearly double, from US$4.5 billion in 2023 to US$8.8 billion in 2032.

FDA stands as an accelerating force for blood-based tests via breakthrough device designation

For a while now, the FDA has been granting breakthrough device designation (BDD) to devices that could address life-threatening diseases with unmet medical needs. BDD facilitates the expedited development, review, and assessment of medical devices, ensuring quicker access for patients and medical professionals. It would not be too ambitious to conclude that strong positive evidence from several uses and studies of ptau217 tests is likely to compel the FDA to approve them for use in the near future. The first sign of this is that the FDA is granting BDD status to multiple ptau217 blood tests.

In March 2024, the FDA granted BDD to Simoa ptau217 by Quanterix. This blood test can detect AD in patients with cognitive ailments even before signs and symptoms start to appear.

In April 2024, the FDA gave BDD to Roche’s Elecsys ptau217 plasma biomarker test to augment early diagnosis of AD. Roche partnered with Eli Lilly to develop this blood test that will widen and accelerate AD patients’ access to diagnosis and suitable medical attention and care.

In early 2019, the FDA gave BDD to C2N Diagnostics’ blood test to detect AD. The BDD status of AD blood tests will likely accelerate the development, review, and assessment processes of these tests, improving patient outcomes.

Some FDA-approved AD drugs have used blood tests in clinical trials. Eli Lilly’s Kisunla and Esai/Biogen’s Leqembi have successfully utilized C₂N Diagnostics’ Precivity-ptau217 blood biomarker in their clinical trials. The FDA approved both drugs to manage AD. This improves the chances of this blood test getting approved by the FDA.

Lumipulse G β-Amyloid 1-42 Plasma Ratio test by Fujirebio Diagnostics received BDD from the FDA in 2019. The company submitted an FDA filing for the Lumipulse G ptau217/β-Amyloid 1-42 Plasma Ratio IVD test in September 2024. If approved, this test will become the first commercially available blood-based IVD test in the USA to detect AD.

EOS Perspective

There has been considerable progress in developing blood-based assays for AD diagnosis by pharma and diagnostics companies. However, a good portion of the liability for their products not reaching market readiness faster lies (and will probably remain to lie) on the approving authorities that are unable to accelerate the administrative steps.

Some blood tests, such as PrecivityAD, are approved for safe use in the EU but are still not in the USA. While such approval is typically a time-consuming process and requires a thorough investigation, the blood tests will enter the market at a larger scale across several geographies only if the authorities fast-track their approvals. This is particularly applicable to blood tests previously successfully used in clinical trials for approved AD drugs and for tests that have already attained BDD status from the FDA.

As an example, PrecivityAD by C2N Diagnostics received BDD status in 2019 from the FDA. However, the FDA has still not approved the blood test for safe use in the USA. This is still despite the fact that PrecivityAD and other C2N Diagnostics’ assays have been utilized in over 150 AD and other research studies across the USA and abroad. FDA’s time-consuming and lengthy review procedures and bureaucratic reasons are some of the factors responsible for the delay in approval. In addition to this, C2N Diagnostics needs to submit some more evidential data pertaining to the accuracy of PrecivityAD, which is likely to take time to produce.

These procedural and administrative impediments, along with the time taken by the device makers to present the data to the FDA, will likely continue to put a brake on the blood-based tests becoming available to patients in the near future.

The situation will remain so, given the FDA’s recent decision to regulate new LDTs involving diagnostic tests that use body fluids such as blood, saliva, CSF, or tissue on similar lines as medical devices (meaning LDTs must comply with the same standards as medical devices). As per this regulation, LDTs need to prove the accuracy of their tests. This decision will have both winners and losers in the AD stakeholder ecosystem.

Researchers and physicians are looking at this regulation with a positive stride as this step will reduce the number of tests with unconfirmed accuracy from the market in the USA. This is undoubtedly a positive change for patients’ safety, reducing the number of misdiagnoses and accelerating correct diagnoses.

On the other hand, smaller start-ups and diagnostic companies are not likely to benefit from this decision as it will restrict the development of new innovative tests vis-à-vis large diagnostic companies. Overall, the decision will likely decelerate the approval of blood-based AD tests or at least will require much more paperwork and proof of accuracy from the device makers. This decision will take effect in multiple phases over four years, starting from July 2024.

On the research and development side of the Alzheimer’s disease diagnostics space, a certain level of symbiosis between drug producers and diagnostic solution providers will continue to impact the market positively. Drugmakers are partnering with or investing in diagnostic companies to leverage the latter’s innovative blood-based biomarkers (BBBM) technologies in the clinical trials of their own drug candidates. This trend is likely to continue.

Not only drugmakers but also more prominent healthcare diagnostics companies, such as Roche and Beckman Coulter, are partnering with early-stage biopharmaceutical companies, such as ALZpath, to develop and commercialize AD ptau217 tests. Collaborations such as these are a testimony to the fact that it is mutually beneficial for AD industry stakeholders to work in tandem to advance AD diagnostics research, a significant growth-driving factor for the market.

by EOS Intelligence EOS Intelligence No Comments

Phase 3 Drug Candidates – A Ray of Hope in Alzheimer’s Disease Bleak Treatment Landscape?

Many biopharmaceutical companies, such as AriBio, Annovis Bio, Athira Pharma, Cassava Sciences, and Alzheon, specializing in treating neurodegenerative diseases, are developing drugs for Alzheimer’s disease (AD) that are currently in phase 3 of clinical trials. If approved, these drugs can ameliorate the AD treatment approaches to a considerable extent. A major prerequisite to this is for concerned authorities to take concrete steps to fast-track clinical trials and increase AD research investment.

With only a 1% success rate of clinical trials in drug development until 2019, the AD treatment gap is alarming. A 99% failure rate means there is a very limited influx of new, more effective, and more advanced AD drugs into the market, and the gap between available treatment options and the rising number of AD cases is increasing.

The disease burden of Alzheimer’s will rise from US$1.3 trillion in 2020 to US$2.8 trillion by 2030 globally. With the rise in the aging population across the globe, the estimated number of AD patients will increase from 55 million in 2020 to 78 million in 2030.

However, recent drug approvals, such as Elli Lilly’s Kisunla (Donanemab) in July 2024 and Biogen/Eisai’s Leqembi (Lecanemab) in January 2023, bring a ray of hope for a new approach to AD treatment.

Initial hopes for new drugs can be premature

New drugs do enter the market from time to time. However, their impact on AD treatment in the long term is not always significant. An example of this is Biogen’s Aduhelm. Based on its ability to reduce amyloid protein in the brain, the FDA approved Aduhelm (Aducanumab) in 2021 in an accelerated approval route for AD treatment.

However, in 2024, Biogen discontinued the drug in the alleged desire to reprioritize its resources in AD treatment. Experts cite weak clinical evidence for efficacy, serious side effect risks, a high price point, and poor sales among the many reasons for Aduhelm’s withdrawal from the market.

AD drug candidates succumb to clinical failures

Eisai and Biogen have been working together since 2014 to develop and commercialize AD drugs. However, they have faced clinical drug failures, similarly to many other pharmaceutical companies during that time. For instance, they had to terminate Elenbecestat, one of their AD drugs, in phase 2 clinical trial in 2019 following an unfavorable risk-benefit ratio finding by the Data Safety Monitoring Board (DSMB).

Eisai launched its first AD drug, Aricept, an acetylcholinesterase inhibitor, in the USA in 1997 in collaboration with Pfizer. The annual peak sales of Aricept were US$2.74 billion before its patent expiry in 2010. However, Pfizer exited neuroscience drug research and development in 2018 after the failure of its AD drug candidates, such as Dimebon and Bapineuzumab.

Clinical challenges in Alzheimer’s research and reallocation of resources were among the other reasons for Pfizer’s exit from neuroscience R&D and drug development. Nevertheless, Pfizer did not desert the neuroscience space completely, rather forged a spin-off company called Cerevel Therapeutics in partnership with Bain Capital.

Phase 3 Drug Candidates - A Ray of Hope in Alzheimer’s Disease Bleak Treatment Landscape by EOS Intelligence

Phase 3 Drug Candidates – A Ray of Hope in Alzheimer’s Disease Bleak Treatment Landscape by EOS Intelligence

Recent drug launches focus on amyloid beta targeting mechanism

In January 2023, the FDA approved Leqembi (Lecanemab), a drug by Biogen and Eisai, for AD treatment. It is a monoclonal antibody that clears away the amyloid beta plaques known to cause cognitive impairment in AD patients. With MHRA’s (Medicines and Healthcare Products Regulatory Agency) approval of Leqembi, Great Britain becomes the first European country to authorize the drug for the treatment of early-stage AD as of August 2024.

In July 2024, the FDA approved Kisunla (Donanemab) by Eli Lilly to treat early-stage AD. The drug’s mechanism of action is the same principle as that of Leqembi, an amyloid beta protein plaque targeting mechanism. Kisunla becomes the third anti-amyloid drug approved for AD treatment, following Aduhelm (now discontinued) and Leqembi. Both Kisunla and Leqembi drugs carry the risks of the formation of temporary lumps in the brain that can be fatal. Therefore, physicians advise regular brain MRIs to alleviate this risk. Neurologists and researchers are in disagreement over whether the benefits offered by these drugs are clinically meaningful.

Researchers are still studying the side effects of these two drugs. Prescribing them requires confirmation of the presence of amyloid protein in the brain. Therefore, PET scans and CSF tests are required before such a prescription.

The FDA has approved both drugs in the USA for intravenous infusions (IV) in the early stages of AD. Kisunla is administered every four weeks instead of every two for Leqembi. Therefore, Kisunla offers greater convenience compared to Leqembi.

Experts from Bloomberg Intelligence suggest that Eli Lilly will likely surpass Biogen and Eisai’s reign at the top of the AD drug market by capturing around 50% of the US$13 billion market globally by 2030. This is partly because of Kisunla’s convenient dosing and the fact that AD patients can stop taking the drug after the amyloid levels touch the clearance threshold.

Newer therapeutic approach-based drugs are in phase 3 clinical trials

Apart from the amyloid beta therapeutic approach, AD researchers are exploring the role of other mechanisms in AD treatment, such as anti-tau antibodies, neurotransmitter receptors, and synaptic plasticity or neuroprotection. Drugs based on these mechanisms are currently in phase 3 of clinical trials.

The Washington University School of Medicine’s DIAN-TU (Dominantly Inherited Alzheimer Network Trials Unit) trial is testing Lecanemab plus Eisai’s investigational anti-tau antibody E2814 in patients with early-onset AD caused by a genetic mutation. E2814 prevents the spreading of tau seeds in the brains of AD patients. This drug is in phase 3 clinical trial. The clinical study commenced in June 2024 and will complete by November 2029.

ACP-204 by Acadia Pharmaceuticals is also in phase 3 clinical trial for AD. The agent acts as an inverse agonist at the 5-HT2A serotonin receptor. FDA has approved Acadia’s previous 5-HT2A inverse agonist, Nuplazid, for Parkinson’s disease psychosis. ACP-204 will be the first drug for AD treatment in Acadia’s product portfolio if approved.

Another drug in phase 3 trial is AriBio’s AR1001, a phosphodiesterase-5 (PDE5) inhibitor. Apart from AR1001, two more AD drugs are in AriBio’s pipeline, AR1002 and AR1003 that are currently under the investigational new drug-enabling stage of clinical trials.

For better patient outcomes, researchers are attempting to develop AD drugs with non-invasive modes of administration that are likely to be less expensive and equally effective compared to AD drugs administered intravenously.

The safety and effectiveness of oral therapy candidate Buntanetap, developed by Annovis Bio, are comparable in people with early onset AD regardless of whether they do or do not carry a genetic risk factor APOE4. That is according to new data from a phase 2/3 clinical trial that tested three doses of Buntanetap against a placebo in more than 300 patients with the neurodegenerative disease. Buntanetap modulates protein production to reduce clumping. The competitive advantage of Annovis Bio over its peers is the fact that Buntanetap targets multiple proteins in the brainsuch as amyloid beta, tau, alpha-synuclein, and TDP43, making it more effective than AD drugs that target a single protein.

Apart from Buntanetap, Annovis Bio has another oral drug to treat advanced AD and dementia in its pipeline, ANVS301, which is in phase 1 of clinical trial. In July 2024, Annovis Bio received FDA approval to transition to a new solid form of Buntanetap in future clinical trials allowing the company to refine its drug formulation, potentially improving its efficacy and safety profiles.

Another promising AD drug candidate, Fosgonimeton by Athira Pharma, is a small-molecule positive modulator of the hepatocyte growth factor (HGF) system, previously showing neuroprotective, neurotrophic, and anti-inflammatory effects in preclinical models of dementia. This drug is in phase 3 clinical trial. Athira Pharma ended 2023 with a strong balance sheet, signaling its better financial position to augment its ongoing pipeline development.

Eli Lilly’s new drug Remternetug works as pyroglutamyl (3)-amyloid beta-protein (3-42) inhibitors, positioning it as a promising AD drug. Remternetug will join Eli Lilly’s portfolio as a second AD drug if approved.

Simufilam by Cassava Sciences is a proprietary, small-molecule oral drug that restores the normal shape and function of altered filamin A (FLNA), a scaffolding protein, in the brain. It is now in phase 3 clinical study to test this new and promising scientific approach to treating and diagnosing AD. The mechanism of action of this drug involves stabilizing a critical protein in the brain instead of removing it. This novel approach distinguishes Cassava Sciences’ drug from other treatments that predominantly focus on amyloid-beta or tau proteins. In May 2024, Cassava Sciences raised US$125 million by selling its stock to shareholders. The funds will be utilized for the continued development of Simufilam.

Valiltramiprosate by Alzheon is potentially the first oral disease-modifying treatment for AD. Valiltramiprosate is well differentiated from plaque-clearing antibodies in development for AD due to its novel mechanism of action, oral mode of administration, and potential efficacy in a genetically targeted population. In October 2017, Valiltramiprosate/ALZ-801 received FDA Fast Track designation for AD investigation. Due to Alzheon’s significant progress in AD drug development, the company has attracted a lot of investors since 2022. Alzheon received US$100 million in June 2024 in Series E venture capital funding which will be utilized to further develop and commercialize Valiltramiprosate. This is in addition to US$50 million received in series D round of funding in 2022.

Big names dominate the competition, with clinical trials in progress by smaller biopharma players

On the competitive landscape front, the AD drug market is highly competitive, with many pharmaceutical companies financing R&D to engineer new drugs that could potentially delay the progression of AD and/or restore neuronal health. The global AD therapeutics market size was US$4.8 billion in 2023 and will surpass US$7.5 billion by 2031, as per Towards Healthcare, a healthcare consulting firm.

A couple of large players still dominate the global AD therapeutics market. Interestingly, they are not the only ones active in the AD treatment development, as several smaller biopharmaceutical companies that specialize in neurodegenerative disease treatment are working on AD drugs (many currently in phase 3 of clinical trials).

High R&D costs are a considerable factor in slowing the progress down

Between 1995 and 2021, the cumulative private spend (total R&D expenditure by pharmaceutical companies, does not include federal funding) on clinical stage R&D for AD was US$42.5 billion, with the largest share of 57% (US$24.1 billion) incurred during phase 3. During the same period, the FDA approved 878 drugs across all therapeutic areas; only six of these drugs were for AD treatment (four cholinesterase inhibitors [ChEIs], memantine, and aducanumab). These statistics speak volumes of the complex, expensive, time-consuming, and predominantly unsuccessful nature of AD clinical trials. This ultimately leads to exorbitant prices of AD drugs.

A range of factors drive the R&D costs and, in turn, the price of AD drugs. A significant component here is patient screening, which contributes to 50-70% of the cost. Patient recruitment and retention are also challenging, given the considerable length of such trials.

Moreover, patient recruitment challenges stunt the progress of AD clinical trials. The recruitment rate for AD clinical trials is as low as one patient per site per month. In terms of eligibility, 99% of AD patients who are eligible for participation in a clinical trial never consider taking part. This further increases the time taken to conduct AD clinical trials.

EOS Perspective

After decades of failure in clinical trials, two anti-amyloid AD drugs, Kisunla and Leqembi, are available in the market, forming a duopoly in the USA. There are several promising drugs in phase 3 clinical trials with a new mechanism of action apart from amyloid beta protein inhibitors. However, the disease management landscape is prone to unforeseen changes, such as the withdrawal of drugs owing to safety, efficacy, and pricing issues.

The AD treatment landscape faces challenges such as drug inefficacy, complex pathophysiology of AD, expensive and time-consuming clinical trials, delays in diagnosis by physicians, behavioral changes and deteriorating mental health of AD patients, and severe side effects of medications. These challenges will continue to impede the development of new disease management approaches.

An issue that is very likely to continue to challenge progress in developing better treatment options for AD is the severe lack of funding. Dementia research is extremely underfunded compared to HIV/AIDS, cancer, and COVID-19 in the USA. Irrespective of the fact that the deaths attributed to AD are on par with cancer, the difference between the annual US federal government funding for AD vis-à-vis cancer is strikingly huge.

AD drug development is a tough market to operate in. The ongoing issue with AD research funding persists, and there do not seem to be changes in federal funding soon. On top of that, the slow progress in successful R&D and many failed clinical research trials will likely make private-sector investors hesitate or withdraw.

In addition to this, AD drug manufacturers will also continue to face the challenge of low to modest drug sales due to poor adoption rates stemming from issues like restricted coverage.

As of June 2023, Medicare was covering AD drugs that slow down the progress of the disease provided a physician agrees to the collection of real-world evidence of these AD drugs, as per the Centers for Medicare & Medicaid Services (CMS). However, there is a significant underlying problem with drugs for AD treatment. When the drug finally enters the market, patients cannot afford the treatment, and the coverage is restricted and sometimes withdrawn. There is no foreseeable change to this impasse, and hence, the AD treatment development is likely to be slow.

If reimbursement of AD drugs is removed, patients are likely to stop administering AD drugs altogether and adopt alternative healthcare resources such as antidepressants, as found in a 2021 study by researchers from Paris-Saclay University and Memory Center of Sainte Périne Hospital in France.

The reluctance of payers to cover the treatment cost for AD is influenced by several factors beyond just the high cost of the drug. Factors include cost-effectiveness of treatments, uncertain long-term safety and efficacy benefits of treatments, clinical guidelines and recommendations, availability of alternative treatments including generics (from drug makers such as Cadila, Cipla, Dr. Reddy’s, among others), and regulatory and reimbursement policies.

The future of AD treatment approaches will continue to remain bleak, and patients will be left with only a few available drug options unless the right authorities set out a plan for fast-track clinical trial processes, increase AD research investment, and support broader insurance coverage.

by EOS Intelligence EOS Intelligence No Comments

Pharma Companies Navigate Their Way through Ac-225 amidst Supply Constraints

438views

Pharma companies have been increasingly investing in developing targeted alpha therapies for cancer treatment, using alpha-emitting isotopes such as Ac-225. However, the current supply for Ac-225 is limited, and thus, companies are working towards securing their supply chain. The recent investment by Eli Lilly in isotope manufacturer Ionetix brings to light the increasing interest of large pharmaceutical companies in Ac-225 and its uninterrupted supply for their pipelines. Similar to Eli Lilly, several other companies have strategically invested in or partnered with manufacturers to ensure a guaranteed supply.

Ac-225 is pegged as a promising isotope for next-generation cancer treatment

Among the recent advances in cancer therapies, only a few have shown as much promise as targeted alpha therapies have. Targeted alpha therapies (TAT) involve using alpha-emitting isotopes to selectively target and destroy cancerous tissue without causing significant damage to surrounding healthy tissue. This is facilitated by the short range of alpha radiation in human tissue (less than 0.1 mm), which corresponds to less than 10 cell diameters. Moreover, they are characterized by high energy levels (5-9 MeV), which results in the selective destruction of malignant cells.

Several alpha-emitting isotopes are currently being explored for TAT, the most common among them being Ac-225, At-211, Pb-212, and Bi-213. Of these, Ac-225 (actinium-225) is considered the most potent medical-grade radioisotope as it has a high decay energy of 5.9 MeV and a half-life of 10 days. It is the isotope of choice in several clinical trials, with about 15 Ac-225-based ongoing clinical trials currently in the USA. However, despite having substantial potential for developing next-generation treatments in the cancer space, their adoption has been slow, given the short supply of the isotope.

Ac-225 is not naturally available and is derived from Th-229 (thorium-229), a byproduct of uranium-233 (U-233), which is a leftover from the production of atomic weapons in the 1950s and 1960s. The initial batch of Ac-225 has been supplied by the US Department of Energy (DOE). However, the supply cannot keep up with the growing demand for trials.

Isotope producers invest to accelerate Ac-225 supply in the future

Currently, there are two commercialized routes to produce Ac-225. As mentioned above, the first and traditional route involves separating Ac-225 from Th-229, derived from the US government’s legacy reserves of U-233. The US government holds about 453kg of U-233, of which only about 256kg is of high quality and will produce about 24g of medical-grade thorium.

The government had previously started a program that extracted a small amount (150mCi) of Th-229, which produced about 1.2 Ci of Ac-225 per annum, enough to treat 1,200 patients. However, in 2019, the US DOE entered into a public-private partnership with Terra Power and Isotek to downblend its stock of U-233 to extract Th-229, which can further be used to develop Ac-225. In 2021, TerraPower entered into an agreement with Cardinal Health, a US-based commercial alpha contract manufacturing organization (CMO), to develop and produce Ac-225 for drug development commercial sales. This will likely significantly improve the supply of Ac-225 in the long run.

The other route to produce Ac-225 is through cyclotron production, which involves irradiating a Ra-226 (Radium-226) target with a proton and knocking off two neutrons. Several isotope manufacturers are adopting this technology and are working on increasing their manufacturing capacity.

Niowave, a US-based supplier of medical and industrial radioisotopes, uses a closed-loop cycle to produce high-purity Ac-225 and other alpha emitters from Ra-226 using a superconducting electron linear accelerator. Similarly, Ionetix, a leading cyclotron technology innovator and isotope manufacturer, uses the same technology to produce Ac-225 and managed to produce its first batch of Ac-225 in June 2024. The company commissioned its first cyclotron at its current facility in 2023, while it aims to install and commission a second cyclotron there in early 2025. By 2025, it is expected that the company will be able to produce about 1Ci per week. The company also aims to establish another site in the USA for Ac-225 production in 2026.

While isotope manufacturers are strategically working to enhance the production of Ac-225 in the long run, the current supply, which is required to fuel the ongoing clinical trials using Ac-225, is quite limited. In 2024, the worldwide supply of Ac-225 is estimated to be about 2Ci per annum, which is merely enough to treat 2,000 patients.

Pharma companies invest in securing their Ac-225 supply chain

Given its currently limited availability and immense potential, leading pharmaceutical players are adopting various strategies to secure their Ac-225 supply to support their targeted alpha therapies drug pipelines. Several leading players, such as Fusion Pharmaceuticals, Telix Pharmaceuticals, and Bayer, are actively working on partnering with companies producing Ac-225 to overcome supply-related challenges for their trials. Recently, a leading pharmaceutical company, Eli Lilly, also joined the bandwagon and secured its supply of the actinium isotope.

Fusion, which has three Ac-225-based drugs currently under trial, was one of the first movers in this regard and has inked several partner agreements to ensure a smooth supply.

In December 2020, Fusion entered into a partnership with TRIUMF, Canada’s national particle accelerator center. In this partnership, Fusion would provide the latter with up to US$18.5 million (CA$25 million) to upgrade its production facilities and scale up production of Ac-225. In return, Fusion would receive preferred access and pricing to the resulting isotope.

In June 2022, Fusion collaborated with Niowave, a US radioisotope manufacturer. Under the agreement, Fusion would invest up to US$5 million in Niowave to further develop their technology to increase their production capacity of Ac-225. In return, Fusion will be guaranteed access to a pre-determined percentage of Niowave’s capacity of the resulting Ac-225, as well as preferred access to any excess stock produced.

In November 2023, Fusion entered into an agreement with BWXT Medical, a US-based supplier of nuclear components and a subsidiary of BWX Technologies. Under the agreement, the latter agreed to provide Fusion with a preferential supply of Ra-225 (parent isotope of Ac-225) and access to high-specific activity generator technology. This would enable Fusion to produce Ac-225 at its own manufacturing facility for use in clinical trials. In addition, BMXT Medical provides Fusion with predetermined amounts of its actinium supply needs under a preferred partner agreement.

Another leading radiopharmaceutical player, Telix Pharmaceuticals, entered into an agreement with Cardinal Health in May 2024 to supply Ac-225 globally.

Similarly, in February 2024, Bayer signed an agreement with PanTera (a Belgian radioisotope production JV created by Ion Beam Applications and SCK CEN) to secure large-scale production of Ac-225. PanTera uses both the Ra-226 and Th-229 production mechanisms to produce Ac-225. It is collaborating with TerraPower to supply Th-229.

Eli Lilly, the largest pharmaceutical company globally, has also recently invested in a nuclear isotope manufacturing company, Ionetix, in August 2024. Eli Lilly has made a US$10 million convertible loan investment in the company to secure its supply of Ac-225. Moreover, PointBiopharma, which was acquired by Eli Lilly in 2023, also had a previous US$10 million investment in Ionetix, resulting in Eli Lilly holding a total of US$20 million debt facility with Ionetix. The pharma giant has the option to convert this debt into equity when Ionetix’s valuation exceeds US$300 million.

These investments by Eli Lilly and Fusion Pharmaceuticals are rare cases where major pharmaceutical companies are investing up the supply chain to secure actinium availability for their cutting-edge drug pipelines.

EOS Perspective

While targeted alpha therapies are emerging as high-potential next-generation cancer drugs, they are plagued by supply constraints of alpha-emitting isotopes, especially Ac-225. Thus, companies seeing great promise in these therapies must work towards securing their supply of these isotopes to ensure the smooth running of their clinical trials.

In the past, large pharmaceutical companies such as BMS have had to halt enrolment in their clinical trials due to the non-availability of Ac-225. Such interruptions not only delay the entire clinical trial but also have significant cost implications and could jeopardize its overall success.

Considering these limitations, it is imperative that pharmaceutical companies with ongoing or planned Ac-225-based trials invest in ensuring a guaranteed supply of the isotope for the entirety of their trial and future production of the drug once approved. While several companies are merely entering into supply agreements with isotope manufacturers, others are taking it one step ahead and investing in their upstream suppliers. Moreover, some companies, such as Fusion and now BMS, are advancing towards building on-site production of Ac-225.

That being said, establishing a secure supply chain of Ac-225 comes with its own set of costs and risks. Most pharmaceutical companies are undertaking significant investments (ranging between US$5-25 million) to guarantee their supply of Ac-225.

However, as a cancer therapy, TAT is in the nascent stages of development, and most trials utilizing Ac-225 are still in either phase 1 or phase 1/2, far from FDA approval. Moreover, the only Ac-225-based trial in phase 3 is being conducted by BMS for neuroendocrine cancer and is currently halted due to supply issues. Given the nascency and early stages of development of this treatment, it is too soon to predict if these heavy investments into Ac-225 would result in the development of FDA-approved drugs and bring sufficient returns. This risk can have particularly dire consequences for small players.

Thus, while companies looking to develop targeted alpha therapies using Ac-225 must work to secure their supply, their level of investment must remain in sober relation to their size, pipeline, and financial position.

by EOS Intelligence EOS Intelligence No Comments

Lessons for Africa: To-do’s from India’s Successful Vaccine Journey

India, still a developing country, has achieved tremendous success as the world’s largest vaccine producer. This accomplishment leads to many lessons that India can offer to other low- to middle-income economies across the globe, such as Africa, looking to ramp up their vaccine industry. The African continent should capitalize on this opportunity and seek guidance from India, considering that India’s pharma and vaccine sectors are four to five decades ahead of the African continent.

How did it all begin for the Indian pharma and vaccine sectors?

The Indian pharma industry is more than a century old, with the first pharmaceutical company founded in 1901 and started operations in Calcutta. Till 1970, the Indian pharmaceutical industry comprised foreign players with very few local companies. However, driven by the purpose of the Swadeshi (meaning ‘of one’s own nation’) movement during the pre-independence era, some pharmaceutical manufacturing firms were founded in India. Established in 1935 in Bombay, Cipla was one such company, which is now a multinational pharmaceutical firm.

Apart from pharma companies, the presence of the Bombay-based Haffkine Institute (founded in 1899) and Coonoor-based Pasteur Institute of India (founded in 1907) solidified the country’s vaccine industry foundation. These institutes manufactured anti-plague, anti-rabies, smallpox, influenza, and cholera vaccines, among others. Nevertheless, the British colonial government in India withdrew the funds during World War II, which led to the subsidence of a few of these institutes.

The Indian pharma industry’s dynamics began to change, with recognition given to process patents instead of product patents. This created an opportunity for local pharma companies to reverse-engineer branded drugs’ formulations. It also allowed the creation of low-cost medicines since the producers did not have to pay royalties to original patent holders. It fueled the generics market growth in India, along with improving the capabilities of the manufacturers to produce high volume at low cost, thereby increasing the cost-effectiveness of the products. This was followed by the exit of foreign pharma players from the country with the removal of the Indian Patents and Design Act of 1911 and the implementation of the Government’s Patents Act of 1970.


This article is part of EOS' Perspectives series on vaccines landscape in Africa. 
Read our other Perspectives in the series:

Vaccines in Africa: Pursuit of Reducing Over-Dependence on Imports

Why Can India’s Vaccine Success Story Be a Sure Shot Template for Africa?

The structural change in the Indian pharma industry was evident from the drastic increase in the number of domestic companies from 2,000 in 1970 to 24,000 in 1995, leapfrogging 12-fold in a span of 25 years.

Additionally, driven by public sector investment and the central government’s prioritization of localized vaccine and drug production, India had over 19 public sector institutes and enterprises by 1971 that produced vaccines and generic drugs. These public sector institutes included Gurgaon-based Indian Drugs and Pharmaceuticals Limited and Pune-based Hindustan Antibiotics Limited.

Some pharma companies entered the export market owing to the 1991 liberalization of the Indian economy, the experience gained from producing cost-effective generic drugs, and global expansion. With this step, the Indian vaccine industry forayed into the international market between 1995 and 2005.

The reintroduction of the product patent system encouraged foreign pharma firms to return to India as the 2005 Patents (Amendment) Act prevented domestic pharma companies from reverse engineering formulations of branded medicines protected by patents to produce generic drugs.

In the pursuit of staying competitive with their foreign peers, Indian pharmaceutical companies focused on improving R&D thereby increasing investments in this space from 2005 to 2018.

What did India do right in vaccine manufacturing?

From investing in education and R&D to making necessary policy changes conducive to the growth of a sustainable and resilient vaccine sector, the Indian government has always been at the forefront of reducing overall pharmaceutical costs and nurturing the pharma industry.

Experience, expertise, and conducive policies enabled India to achieve cost-effectiveness

Indian government’s concrete action in strategy and policy-making has empowered the pharma industry to grow in a conducive environment. These conditions enabled the sector to become cost-effective by producing low-cost generic medicines and vaccines at high volumes.

This is evident from the fact that Invest India, the country’s investment promotion agency, states that producing pharmaceuticals in India is 33% cheaper than in Western markets due to labor costs being 50-55% lower. The cost of conducting clinical trials in India is also much lower, approximately 40%-80% cheaper when compared to Western markets, according to a 2010 article by the International Journal of Pharmacy and Pharmaceutical Sciences.

Indian pharma firms sometimes reverse-engineer medicines produced by companies making branded drugs and sell the formulation at a much-reduced price. The unique selling proposition of the Indian pharma industry has always been high volume coupled with low costs to make its products more affordable and accessible to patients across low- to middle-income strata of society.

Investments towards a robust scientific workforce helped reduce API import dependencies

Backed by the central government’s prioritization of domestic vaccine and drug production, some pharma companies in India started manufacturing raw materials or key starting materials to minimize the dependencies on API imports.

Other initiatives to strengthen the foothold of the Indian vaccine sector were directed towards building a solid talent pool of professionals who could develop drugs and vaccines independently rather than copy the processes from branded medicines. A result of this approach was the Lucknow-based Central Drug Research Institute (CDRI), which was founded in 1951 and continues to be one of the leading scientific institutes in India.

With the creation of the Department of Biotechnology (DBT) in 1986, India took another massive step towards progressing its pharma industry. Since then, DBT has been at the forefront of providing financial and logistical support for vaccine development and production using new and advanced technologies. The organization is also involved in creating biotech training programs for universities and institutes across India.

Lessons for Africa To-do's from India's Successful Vaccine Journey by EOS Intelligence

Lessons for Africa To-do’s from India’s Successful Vaccine Journey by EOS Intelligence

What can Africa learn from India’s experience?

It would be too ambitious to anticipate Africa replicating the Indian vaccine sector’s strategies and mechanisms in every way and detail. Although the two regions share enough similarities regarding disease profiles, geographies, climates, economies, etc., differences in competition, technology, and market dynamics cannot be ignored.

These differences could benefit and challenge the vaccine sector in Africa. The region must prioritize the creation of a resilient, sustainable, and robust life sciences ecosystem that will support the pharma, medical technologies, and vaccine sectors in the long run.

Development of a strong life sciences ecosystem that nurtures the overall vaccine sector

Africa needs to form close ties with multiple supporting networks, similar to how the Indian vaccine producers networked with the local biosciences ecosystem. These supporting networks must be associated with the production of multiple pharmaceutical products for a region, building a strong scientific labor force alongside reinforcing its regulatory system.

Higher level of autonomy for the leadership teams of government-led vaccine facilities

One of the key learnings from the pitfalls of India’s vaccine sector is that the executive/leadership teams of government-owned vaccine facilities should receive a higher level of autonomy. Interferences from government agencies should be avoided to the maximum extent possible. A classic example from the Indian market is the 2020-2021 downfall of HLL Biotech Limited which could not produce any COVID-19 vaccine owing to government interferences in the technology upgrade and production-related decisions.

EOS Perspective 

For the African vaccine development and production industry to embark on a path of growth, it is imperative to learn from the valuable lessons available. However, with limited financial resources and insufficient infrastructure, it is crucial to prioritize the actions taken to ensure maximum progress.

To start building a favorable environment, it might be beneficial for the African markets to develop policies emphasizing process patents more than product patents, at least in the initial few years. This could be akin to regulations in the Indian pharma sector of 1970-1995, which proved quite effective and could fuel the growth of the generics market in Africa. Creating such an environment would waive off patent protection of branded drug manufacturers initially so that the local pharma companies can produce medicines at a low cost without paying royalties for copying the drug formulations of the branded drugs. Therefore, Africa can focus on building their generics market first and utilize the profits from there to reinforce the vaccine industry.

Secondly, African governments should initiate expanding the number of technology transfer hubs across the continent that focus not only on mRNA-based vaccines but also on newer DNA-based vaccines that are more suited for the African climate. Partnerships and collaborations with research institutes that are already working towards this goal can be a good first step.

One crucial step, which should not be delayed, is building a robust, skilled workforce to drive the sector development. Unfortunately, most African countries’ current education curricula are not in sync with the continent’s needs for vaccine manufacturing. Therefore, Africa urgently needs investment in education from various sources to develop the backbone of the vaccine industry so that the new education system can produce employable graduates in this field. It is important to note that the African governments should take a significant portion of this responsibility.

To begin with, new graduates can be something other than tertiary-educated, highly specialized professionals, such as PhDs. Rather than that, some form of vocational training in vaccine manufacturing or bachelor’s programs in relevant subjects, such as pharmacy, chemistry, etc., would help produce sufficiently skilled labor. This manpower can work and train further on the job under the guidance and supervision of foreign high-level talent and local high-level scientists who are present in the continent relatively sparsely.

These vocational programs should be designed in a collaborative effort between educational institutions and the existing and new vaccine manufacturing facilities in Africa. This would increase the chances of the African manufacturing facilities absorbing the graduating trainees.

India’s education evolution demonstrates the significance of having domestically bred relevant talent to augment and strengthen its own pharma and vaccine sector. This can empower Africa to curb the costs associated with foreign talent hunting and be more resilient to situations such as staff shortages, foreign staff availability fluctuations, etc.

Moreover, it is the responsibility of African governments to support the creation of jobs in vaccine manufacturing and R&D to attract the newly-trained workforce. A proven approach to this is to offer incentives for employing local talent to foreign and domestic investors who intend to set up vaccine facilities in the region. The incentives could range from tax rebates, exemptions, or credits, to offering employee training grants, subsidies for insurance coverage, etc. If this can encourage the creation of jobs in the sectors, young Africans will likely be keen on enrolling in related vocational programs.

Looking at the long-term objectives for the continent’s vaccine industry path, Africa’s primary aim should be to meet its own domestic vaccine needs in terms of both volume and disease spectrum.

Africa can learn critical lessons from India’s strengths and weaknesses in the vaccine sector. The weight of kick-starting the industry development inevitably lies on the African governments’ shoulders, and the sector will not develop on its own. It is high time for stakeholders, such as state governments, regulatory bodies, institutes, pan-African organizations, and local pharma companies, to speed up the process of absorbing and implementing these lessons. It is the only way to achieve the goal of 60% domestic vaccine production by 2040.

by EOS Intelligence EOS Intelligence No Comments

Why Can India’s Vaccine Success Story Be a Sure Shot Template for Africa?

Africa is currently facing significant challenges related to limited accessibility to vaccines as well as ongoing vaccine hesitancy. African CDC has identified these problems and is taking concrete steps to achieve its 2040 target of 60% of vaccines available on the continent to originate from domestic production. India is one of the key countries invested in the growth of Africa’s healthcare sector both financially and logistically. Due to similar geographies, climates, disease prevalence, and economies, Africa could take guidance, collaborate, or replicate Indian vaccine manufacturers’ strategies and mechanisms to scale up its vaccine sector.

Africa has one of the lowest average vaccine administration rates globally

Unbalanced access to vaccines in Africa compared to other regions became quite vivid during the COVID-19 pandemic. Africa’s average number of coronavirus vaccine doses administered per 100 people was 54.37 as of March 15, 2023. Seychelles administered the highest number of vaccine doses at 205.37 and Burundi the lowest at 0.27.

In contrast, the world average stood at 173, with high-income countries such as the USA and Canada administering 191 and 258 vaccine doses per 100 people, respectively. Interestingly, Cuba, despite being an upper middle-income economy, administered 385, a higher number of doses per 100 people than some high-income countries.

Even some low-income economies such as Vietnam (276), Bhutan (264), Bangladesh (218), Nepal (213), and Sri Lanka (184), among others, administered a higher number of coronavirus vaccine doses than the world average (173), and far more than Africa’s average.

These stark variations in the vaccine administration rates across countries could be attributed to the lack of easy accessibility, especially in Africa, apart from other factors such as vaccine hesitancy.

Africans’ vaccine hesitancy slows down the uptake of vaccination

Vaccine hesitancy is caused by several factors such as personal beliefs, misinformation or myths, healthcare infrastructure and access, religious and cultural beliefs, and vaccine safety concerns. These are typically the main reasons for vaccine hesitancy according to an October 2023 article published by ThinkGlobalHealth, and several of these reasons are likely to apply to the African continent.

In addition to these, another critical factor that cannot be ignored is people’s lack of trust in the health ministries, a relevant aspect in some African countries such as South Africa. This was largely due to the ministries’ involvement in procurement corruption of COVID-related aid according to an article published by GlobalData in November 2023.

Africa’s low vaccine administration rate is driven by limited accessibility

One major reason for the vaccine’s low administration rate in Africa is the limited accessibility to vaccines. This has been an ongoing issue on the continent and was not just limited to pandemics such as COVID-19 and Ebola.

The African continent is overdependent on vaccine imports, with 99% of its vaccine needs being satisfied from abroad. With a total of 13 operational production facilities across the continent, the current vaccine manufacturing industry is in its infancy in Africa and produces 1% of the continent’s vaccine supplies.

African countries have recognized this issue and begun working towards its goal of meeting 60% of the continent’s vaccine needs domestically by 2040, with interim targets of 10% by 2025 and 30% by 2030.


This article is part of EOS' Perspectives series on vaccines landscape in Africa. 
Read our other Perspectives in the series:

Vaccines in Africa: Pursuit of Reducing Over-Dependence on Imports

With some local talent available, Africa needs the right development template

While the local vaccine industry is underdeveloped, to say the least, the continent is not entirely without the talent required to produce home-grown vaccines and other pharmaceutical products such as test kits. For instance, Senegal-based Pasteur Institute developed a US$1 finger-prick at-home antigen test for COVID-19 in partnership with Mologic, a UK-based biotech company. Although the funding came partially from the UK, local talent was predominantly utilized.

To establish a sustainable vaccine sector, Africa does not need to reinvent the wheel. It could utilize lessons and success stories of other countries that have built this industry and share similarities with the African continent.

India is one such country with a vast size, diverse cultures, geography, and administrative structures under one roof, and has a tropical climate and disease profile similar to those in Africa. Additionally, India’s symbiotic relationship with the African healthcare sector would also play a significant role in empowering Africa to leverage the expertise of the Indian vaccine sector. This could be a step in the right direction for the African continent to achieve vaccine sovereignty.

Why Can India's Vaccine Success Story Be a Sure Shot Template for Africa by EOS Intelligence

Why Can India’s Vaccine Success Story Be a Sure Shot Template for Africa by EOS Intelligence

Africa’s partnership with India in healthcare is not new

Africa has a long-standing healthcare partnership with India, as the latter has been the largest supplier of generic medicines to Africa. Additionally, some US$3.4 billion worth of pharma products, i.e. close to 20% of India’s total pharma exports, went to African countries as of 2018. In 2020-2021, India’s pharma exports to Africa amounted to US$4.3 billion as per the Pharmaceuticals Export Promotion Council of India (Pharmexcil).

Between 2010 and 2019, India was also the third-largest contributor to Africa’s healthcare investment landscape, after the UK and the USA. During this period, India invested around US$210 million out of a total of US$1.1 billion in global investments into Africa’s healthcare sector, accounting for a 19% share.

In the past, African pharma companies have relied on Indian organizations to pivot and streamline their business in difficult times. For instance, South Africa-based Aspen Pharmacare could not sell a single dose of its COVID-19 vector vaccine owing to multiple factors, such as the rising popularity of mRNA vaccines. Ultimately, the company partnered with the Serum Institute of India (SII) in August 2022 to produce its vaccines to minimize business loss and idle production capacity. This is just one example showcasing opportunities where African vaccine producers collaborated with Indian vaccine makers. This kind of collaboration can also become a source of guidance and knowledge on how to create own sustainable ecosystem for vaccine production.

Collaborations between Africa and India have also extended beyond adverse situations. One example of this is a partnered research to produce a DNA-based dengue vaccine. Scientists from Bangalore and Goa in India and Nairobi and Cameroon in Africa have been working together in a partnership called the India-Africa Health Sciences Collaborative Platform (IAHSP), set up in 2019. The partnership results from a collaboration between India’s ICMR (Indian Council of Medical Research) and the African Union to create this DNA-based dengue vaccine, among other research work involving antimicrobial resistance, per a January 2022 Springer Nature article.

Furthermore, in December 2020, the Indian Healthcare Federation (NATHEALTH) and the African Health Federation (AHF) partnered to foster investment in healthcare and thus promote business opportunities in healthcare between India and Africa.

India’s pharma industry has merits to learn from

The Indian vaccine production sector is rapidly gaining steam in the global market and outpacing multinational players in this industry. A few prominent Indian vaccine producers, such as SII, Bharat Biotech (BBIL), and Biological E, have captured a considerable market share globally.

Interestingly, over 60% of the global vaccine needs in terms of volume are being satisfied by only five producers globally. Three of these five producers are based in India: Pune-based SII, Hyderabad-based BBIL, and Mumbai-based Haffkine. SII tops the list of these five global producers with a 28% volume share globally, and BBIL (9%) shares the third spot with Sanofi, followed by Haffkine (7%), as of 2019.

For many years, India has been supplying cost-effective and high-quality generic medicines and vaccines, which has earned the country the title of ‘pharmacy to the world’. The title is not exaggerated, as India alone accounts for 62% of global vaccines and 20% of global generic drugs’ production by volume as of 2023. The Indian pharma sector holds the third rank by production volume and tenth by value globally.

With an 18% share of pharmaceutical exports and vast needs, Africa is the second-largest importer of pharmaceutical products from India as of 2019.

Indian vaccines’ success in Africa proves that Indian producers understand African needs

In its quest to develop its own vaccine production sector, Africa can learn a host of aspects of vaccine production from India. This includes but is not limited to the cost-effectiveness of vaccines against diseases such as COVID-19, rabies, diphtheria, pertussis, tetanus (DPT), human papillomavirus (HPV), malaria, Ebola, and meningitis. India is four to five decades ahead of Africa in vaccine manufacturing and has already done its homework on how to do it right. That’s a useful source of knowledge for Africa’s budding industry, especially since Indian-made pharma products tend to align well with the needs of the African continent.

Serum Institute of India’s (SII) foothold in Africa

SII is now the largest vaccine producer by the number of doses manufactured and sold worldwide (over 1.6 billion doses across 170 countries in 2020), including for polio, diphtheria, tetanus, pertussis, haemophilus influenzae type b (Hib), BCG, r-Hepatitis B, measles, mumps, rubella, as well as pneumococcal and COVID-19 vaccines. According to estimates, nearly 65% of children across the globe receive at least one vaccine produced by SII.

SII has a strong foothold in Africa, with several of its vaccine products being extensively used or developed specifically for the continent’s needs.

MenAfriVac, manufactured by SII, is a vaccine to prevent meningitis and was rolled out in Africa in 2010. The vaccine was developed specifically to curb the spread of meningitis in Africa to cater to the vaccine needs of its population. The price of the vaccine is less than US$0.50 per dose, with an efficacy of 52% among 12–23-month-old children and 70% among older children and adults. Thanks to the vaccine, over 152 million people were inoculated by MenAfriVac by the end of 2013, enabling the elimination of meningitis epidemics in 26 African countries.

Another example of an India-made vaccine to particularly reduce Africa’s disease burden of malaria and cater to its people’s vaccine needs is R21/Matrix-M. SII, along with Oxford University, has produced this malaria vaccine using the technology of Novavax, a US-based biotech company. The vaccine has been approved for use by some African countries’ regulatory authorities, such as Ghana, Nigeria, and Burkina Faso, as of December 2023. According to a January 2024 press release by SII, the vaccine showed efficacy of around 78% in the age group between five- and seventeen-months children in Burkina Faso, Kenya, Mali, and Tanzania over the first year. The company is planning to roll out the 25 million vaccines produced in the coming four to five months.

In December 2022, SII acted rapidly on the Sudan Ebolavirus outbreak in Uganda by sending over 40,000 doses of the investigational ChAdOx1 SUDV vaccine in a record time of 80 days after WHO declared the epidemic.

These are some examples showcasing the fact that SII, along with other Indian producers, understands Africa’s vaccine needs, which is evident from the success of these vaccines in Africa. Consequently, it makes logical and economic sense for Africa to learn from Indian vaccine manufacturers to develop low-cost, effective vaccines.

Apart from successfully selling its vaccines in Africa, SII also actively contributes to the knowledge transfer into the continent. In January 2024, SII partnered with the Coalition for Epidemic Preparedness Innovations (CEPI) to foster low-cost vaccine production in Global South countries, including Africa (also comprising Latin America and the Caribbean, Asia (excluding Israel, Japan, and South Korea), and Oceania (excluding Australia and New Zealand)) to curb the outbreak of life-threatening diseases. CEPI is a global organization formed as a result of an international collaboration between public, private, philanthropic institutions and NGOs.

CEPI has three other members apart from SII: South Africa-based Aspen Pharmacare, Senegal-based Institut Pasteur de Dakar, and Indonesia-based Bio Farma. With this partnership, CEPI intends to capitalize on SII’s expertise in making affordable, cost-effective vaccines in record time. In this pursuit, CEPI is investing US$30 million so that vaccine developers who are already partners of CEPI can expedite technology transfers to SII within days or weeks of any outbreak. This will enable SII to produce vaccines against the impending disease.

Bharat Biotech’s (BBIL) foothold in Africa

With over 145 global patents and a portfolio comprising over 16 vaccines, BBIL has sent over 6 billion doses of vaccines to 125 countries worldwide. BBIL has produced vaccines against influenza H1N1, rotavirus, Japanese encephalitis (JENVAC), rabies, chikungunya, zika virus, and cholera. The company is also the creator of the world’s first tetanus toxoid conjugated vaccine for typhoid. In addition to these, BBIL has manufactured WHO pre-qualified vaccines, such as BIOPOLIO, ROTAVAC, ROTAVAC 5D, and Typbar TCV against polio, rotavirus, and typhoid infections, respectively.

BBIL has also been offering its products to Africa. In one of the recent examples, the company delivered its rotavirus oral vaccine, ROTAVAC, to Nigeria to immunize the country’s children in August 2022. The vaccine is expected to minimize the occurrence of the disease and death due to rotavirus among Nigerian children below the age of five years by at least 40%, according to research by the Johns Hopkins Bloomberg School of Public Health.

Another example of a vaccine made by BBIL that is aligned with the needs of the African population is MTBVAC. In March 2022, the company announced its partnership with Spain-based biopharmaceutical company Biofabri to develop, produce, and distribute MTBVAC, a novel TB vaccine. Phase 3 trial is currently underway in TB-affected regions of Sub-Saharan Africa such as South Africa, Madagascar, and Senegal. With 25% each, Sub-Saharan Africa and India account for the highest TB burden across the globe. The vaccine is being developed to target TB in these susceptible regions to eradicate the disease.

Several other Indian manufacturers have rolled out successful vaccines against various diseases in Africa that have significantly reduced the disease burden in the region.

EOS Perspective

Achieving 60% local vaccine production within 15 years will be possible only if Africa chooses a robust role model to learn from. India stands out as possibly the only near-perfect choice for that. To foster the development of a seamless and sustainable vaccine ecosystem, Africa should replicate, take guidance, and collaborate with Indian manufacturers as much as possible.

The world has evolved and many steps taken by India in the past cannot be directly transplanted into the current African scenario. However, India’s approach to building self-reliance in pharmaceutical production can undoubtedly offer valuable lessons. Direct know-how and technology transfer, collaborations, approach to talent training, production facilities management, procurement handling, supply chain management, licensing, and IP protection are critical aspects in which Africa could utilize India’s expertise and experience in vaccine making.

By choosing India as a role model and emulating its focus on nurturing a competitive pharma manufacturing industry, Africa could take a significant step towards achieving the goal of self-sufficient vaccine production.

by EOS Intelligence EOS Intelligence No Comments

Pet Wearables – Are Companies Barking Up the Right Technology?

1.3kviews

As the human wearables market begins to mature, a lot of interest and developments are also happening in the pet wearables space. An increasing number of pet owners becoming more technologically savvy has fueled product innovations in this segment, which traditionally was limited to GPS tracking. While location tracking continues to be the largest piece of the pie, other solutions, such as health monitoring devices, have been gaining prominence. However, this segment is still in its infancy and is toying with several technologies, such as biometrics, radar, and acoustic technology, to develop functional, accurate, and price-effective devices.

The last decade has witnessed exponential growth and advancements in human wearables. However, recent years have also seen the trend of wearables permeating the pet market. With upcoming technological advancements, the industry is expected to witness double-digit growth over the next six years and expand into new territories.


Read our related Perspective

Poop to Pills: Is FMT the Future of Veterinary Medicine?

ID tracking is the largest category, health monitoring is growing the fastest

The pet wearables market is primarily bifurcated into four applications: ID tracking, behavior control, safety, and health monitoring. At the moment, the largest category within the market is ID tracking solutions, which comprise GPS—and RFID-based trackers that help identify and locate pets. One of the leading players in this space is US-based Tractive, which provides a GPS collar that allows pet owners to know the exact location of their pets at all times.

The fastest-growing category is health monitoring. This segment encompasses devices that monitor a pet’s vitals and general health and raise an alarm in case of any irregularities. Growing pet obesity cases have resulted in pet owners choosing health monitoring devices for their pets. A popular product in this space is the PetPace Smart Collar by US-based pet wearable company, PetPace, which tracks physiological metrics such as pulse, respiration, temperature, heart rate variability (HRV), activity level, and posture. Along with GPS tracking and emergency alerts, it helps in early symptom detection and disease management.

The behavior control segment, which is still relatively small, covers products that help teach pets appropriate behavior, such as bark collars, which deter dogs from barking continuously. An innovative and popular product in this category includes the PetSafe Treat & Train Remote Reward Dog Trainer by US-based pet-tech company PetSafe. The product allows pet owners to dispense treats remotely through an electronic trainer to induce calm behavior in case of distracting situations, as well as allows owners to reward their pets in case of good behavior.

The smallest category is safety, which is largely an extension of ID tracking and comprises pet cameras that capture a pet’s movement. Mr. Petcam is a US-based company that provides collar-mounted HD video cameras for dogs or cats, allowing pet owners to see what their pets see in the yard, at home, or during walks.

Pet Wearables – Are Companies Barking up the Right Technology by EOS Intelligence

Pet Wearables – Are Companies Barking Up the Right Technology? by EOS Intelligence

The industry is undergoing both organic and inorganic growth

Pet adoption increased significantly during the COVID-19 pandemic as people were confined to their homes and lacked social and emotional connection. As per the American Society for the Prevention of Cruelty to Animals, one in five Americans purchased or adopted a pet during COVID-19.

Many of these pet owners are adept in technology and spend vast sums of money on their pets. As pets are increasingly considered family members and with growing concerns for their health and well-being, pet wearables are experiencing a surge in popularity. The success of wearable technology for humans further fuels this trend. Moreover, increasing costs of veterinary services and treatments have propelled pet owners to invest in health and prevention-based wearables. Therefore, the industry is expected to grow significantly, especially in Europe and North America, in the coming years.

However, that being said, the industry is in its nascence and is highly fragmented at the moment. There is a large number of players fueled by several start-ups and new entrants. The industry is seeing a surge in acquisitions as players in the pet care and tech space are looking to expand their offerings to include pet wearables. Moreover, growing interest from venture capital firms is also resulting in large investments in companies showing promise in this space.

One of the leading players in the pet market, Mars Petcare, launched Companion Fund in 2018 and Companion Fund II in October 2023. The US$100 million and US$300 million venture capital funds, respectively, have been created to invest in start-ups in the pet care space, including pet wearables. Earlier, in 2016, Mars Petcare acquired the Whistle pet monitor and GPS tracker, similar to a Fitbit for dogs, for about US$117 million. This provided Mars Petcare an entry into the pet wearables space.

Several other players in the technology space have also acquired companies to expand their business to cover pet wearables. In 2019, Florida-based IoT company Smart Tracking Technologies acquired Link AKC for an undisclosed amount. This wearable pet technology company developed GPS-enabled dog collars and won the Best Innovation award at CES 2017 in the wearable technology category.

In April 2023, Ultrack, a leading global GPS tracking solutions provider, signed a contractual agreement to acquire and market Supreme Product’s wearable GPS-based Pet Tracker. The device is expected to have multiple features, such as health monitoring, behavior modification, predictive analytics, social media integration, and virtual fences.

Similarly, in May 2023, Datamars, a global data solutions company, acquired Kippy, an Italy-based GPS tracking and activity monitoring solution provider. Kippy collar’s main features include GPS tracking, customized activity monitoring and analysis, reminders and access to vet records, temperature alerts, tone and vibration training controls, a built-in flashlight, and the ability to create safe places for the pet.

While several companies are adopting the inorganic growth strategy, there is also a lot of venture capital interest, especially in ID tracking, which is the largest product category and acts as an entry point device for many customers in the pet wearables space. In 2021, Austria-based leading pet tracking company Tractive raised US$35 million Series A round (led by Guidepost Growth Equity) to expand its offerings in the USA. Similarly, in 2021, Fi, a US-based pet wearable start-up, received US$30 million in Series B funding (following a Series A funding of US$ 7 million in 2019) for its smart pet collars to expand its footprint across the USA.

Pet wearables companies seek the right tech for pet health monitoring

While most technologies used in pet wearables are fairly similar to those used in human wearables (such as GPS), one of the key differentiators is the effectiveness of biometric sensors for health monitoring. Biometric sensors are widely used in human wearables, although given the fur presence in animals, they are somewhat ineffective in the case of pets. Thus, pet wearables depend on other contactless sensors such as radar and acoustic. However, these have their own functional and developmental challenges.

Among these, acoustic sensors are some of the oldest and are used by one of the market leaders, PetPace. Acoustic technology uses sound waves to monitor a pet’s heart rate, heart rate variability (HRV), and respiratory rate. Players such as PetPace and Inupathy use this technology in their smart collars. Moreover, in 2020, the Bioengineering Department at Imperial College also developed wearable technology for sniffer dogs based on acoustic sensors.

While this technology is fairly widely used for clinically monitoring health for both humans and pets, there are certain challenges when it is translated into wearables for pets. Given external factors, such as background noise and motion artifacts, the PetPace collar is said to have only 53% heart rate detection sensitivity (i.e., in 53% of the cases, the standard deviation from measurements by PetPace and ECG was within 10%) based on a study conducted in 2020. However, based on another 2017 study, the device’s pulse monitoring accuracy levels can be much higher at 94.3%.

That being said, Tokyo-based Inupathy also uses acoustic sensors to capture a dog’s heart rate and HRV and displays colors and patterns on its pet collar to depict emotional state and heartbeat ranges. For instance, the calmest state is depicted with deep blue, whereas the most excited state is bright red. While the company claims to have 90% accuracy when compared with ECG monitors, the collar is marketed as a device to broadly understand the mental and physical state of the pet instead of accurately monitoring and projecting heart rate readings.

Thus, while acoustic technology can be used in pet wearables, it has limitations, especially regarding accuracy. With the PetPace collar being priced at about US$150 (with a monthly subscription of US$15) and Inupathy at US$200, the customer must be able to find value in the readings. One of the initial companies using acoustic sensors, Voyce, went out of business in 2016 due to slower-than-expected acceptability.

Acoustic sensors-based solutions by themselves may not be a sound product offering, however, when clubbed with other technologies and solutions, they can offer a wholesome solution to the pet owner. This can be seen in the case of PetPace Smart Collar, which, along with acoustic-based health monitoring, has additional offerings such as thermometers for temperature detection, 6-D accelerometers for activity, calories, and posture calculation, and GPS for location tracking.

A more promising and upcoming technology for health monitoring in pets is radar technology. The technology uses radio waves to enable continuous and contactless heart and respiration rate monitoring. While it is relatively new, it is expected to have better accuracy when compared with acoustic sensors. Two companies, France-based Invoxia, and Taiwan-based ITRI, launched smart collars with radar technology in 2022. Invoxia’s smart collar is priced competitively at US$99 (with a monthly subscription of US$13). It uses embedded artificial intelligence and miniaturized radar sensors to track a dog’s health. In addition, it monitors a dog’s daily activity, such as walking, running, scratching, eating or drinking, barking, and resting. The device has an accuracy of 98% for heart rate detection.

Similarly, ITRI also launched its smart wearable device, iPetWear, in 2022. The device uses contactless micro-physiological radar sensing technology to monitor a pet’s health. The sensor can monitor a pet’s heart rate, respiratory rate, sleep cycle, and activity levels through the detection of pulse and chest motion through its lower-power Doppler radar technology. The device claims to have an error rate of under 10% for heart and respiration rate and under 5% for activity monitoring. The device is priced at US$80.

Given the improved accuracies and competitive pricing of these products, it is safe to say that radar technology-based sensors can disrupt pet health monitoring wearables. However, this technology is difficult to develop, and at the moment, only a limited number of companies have managed to commercialize it.

Companies are also exploring ways to make biometric sensors effective for pets, even though furry pets present a challenge for such sensors. This is seen in the case of Invoxia, which had previously launched the radar-based Smart Collar. At CES 2024, Invoxia launched another pet wearable device, the Invoxia Minitailz Smart Pet Tracker. The tracker uses advanced miniaturized biometric sensors along with AI to track respiratory and heart vitals and detect anomalies in the behavior of both dogs and cats. In addition, it tracks a pet’s location and daily activities and can differentiate between types of movement. It also claims to be the first pet collar in the market to detect atrial fibrillation (AFib). The device also seems to have high accuracy (similar to radar technology) as it claims to have 97-99% accuracy rates for monitoring respiratory and heart vitals. The product, priced at US$99 with a monthly subscription cost of US$8.30, is relatively new in the market, and its effectiveness is yet to be established.

If Invoxia Minitailz Smart Pet Tracker is successful and delivers on its promise (with regard to accuracy and functionality), several other players will likely also explore biometric sensors for pet health monitoring.

Other technologies, such as LiDAR and infrared, are also being explored as potential alternatives. However, there are not many commercially successful solutions based on them yet.

Potential risk of data breach is one of the biggest threats to pet wearables

Given the expanding scope of all these technologies, the pet wearable market is booming. However, it comes with its own set of challenges. While companies claim to have high accuracy rates, no FDA approvals are required for pet wearables at the moment. Thus, there is no way to verify the actual effectiveness of these devices. Moreover, since they deal with critical health conditions, a missed reading or a misdiagnosis can have dire consequences. Pet owners can also not consider these devices to be a replacement for their vet visits at large, and the devices can only act as information gatherers that can help vets make quicker diagnoses.

The industry is also facing a significant obstacle in the form of substandard battery technology. Given the number of features on each device (such as GPS tracking, health monitoring, two-way communication, etc.), its continuous and real-time work requirement, and the limited lifespan of lithium-ion batteries, companies have difficulty providing sufficient battery life for their devices. In several cases, pet owners find that the battery gets discharged sooner than they can recharge it. Therefore, the device loses its purpose since it is meant to provide continuous real-time data to be effective. To mitigate this, companies are looking into other battery options, such as lead acid (less efficient than lithium-ion) and silicon carbide (a more expensive option).

Another issue with these devices is the potential risk of data breaches. Wearables collect large amounts of data about pets and pet owners. In a 2019 study by Bristol University, pet wearable devices collected four times more data about the pet owner than about the pet itself. If this data is not properly secured, it could result in data leaks and cyberattacks and put the owner at risk.

EOS Perspective

With pet ownership increasing, the market for pet wearables will undoubtedly grow. Moreover, as human wearables continue to permeate our daily lives, it is natural that pet owners are looking for a similar advanced level of monitoring for their beloved companions.

The market, which started with single functionality tracking devices, is now moving towards more complex and technologically advanced solutions. While tracking and GPS-based devices continue to form a significant portion of the market at the moment, several leading players in the space (such as Tractive) are now integrating other functionalities with their location-tracking offerings.

Thus, the market is expected to move towards multi-functional solutions that offer basic features such as tracking along with advanced features such as activity and health monitoring. Also, within health monitoring, offerings will continue to differ based on complexity. For instance, some devices offer insights only into weight and temperature changes, while more advanced devices offer heart and pulse rate monitoring. As seen in the case of human wearables, the market is likely to move towards the latter as continuous advanced health monitoring becomes a standard way of managing well-being for both humans and pets.

Given the industry’s nascence, fragmented market, lack of big established brands, and low brand loyalty, the products’ key differentiating factors are likely to remain competitive pricing, advanced offerings, and effective technology.

For this, it becomes essential for companies to stay ahead of the curve and to explore possible technologies, beyond what is effective in human wearables. Therefore, companies that are investing in exploring suitable technologies, such as radar and biometrics, for advanced features, such as heart rate monitoring, are likely to emerge as market leaders in the long run.

Moreover, the pet wearables market is likely to also benefit from integration with pet insurance in the future. Both industries have synergies as the insurance sector can gain from health-based data derived from pet wearables. On the other hand, increasing demand for pet insurance is expected to provide a push to the pet wearables market, as pet owners who track and monitor their pet’s health can negotiate better and more competitive insurance rates.

Undoubtedly, the industry is poised for steady and strong growth. The market will likely consolidate, while players offering technologically advanced wearables focused on health monitoring and priced at around US$100-150 will emerge as leaders.

Top