• SERVICES
  • INDUSTRIES
  • PERSPECTIVES
  • ABOUT
  • ENGAGE

GREENHOUSE EMISSIONS

by EOS Intelligence EOS Intelligence No Comments

IMO 2023 – Shipping Industry Sailing towards a Greener Future but Unsure of the Route

454views

The shipping industry plays a vital role in global trade. The majority of goods are transported by sea, and most shipping vessels currently rely on marine fuels such as Marine Diesel Oil (MDO), Marine Gas Oil (MGO), and Heavy Fuel Oil (HFO). One of the main reasons is that these fuels are cheaper and readily available, however, they are not environmentally friendly. The shipping industry discharges a significant amount of carbon emissions, therefore, decarbonization and eventually reaching zero carbon emissions in this sector has become imperative. The United Nations agency responsible for regulating shipping, the International Maritime Organization (IMO), aims to reduce ocean-vessel emissions to half by 2050. To meet the target, the shipping sector is looking to switch to alternative fuels, however, the feasibility of this change still remains to be assessed.

The shipping industry accounts for a vast proportion of global trade as a result of rapid growth in cargo transportation due to increased globalization and e-commerce. According to the International Chamber of Shipping, 90% of global trade is transported by sea, hence perpetuating carbon emissions in the shipping industry. According to a study published by the European Parliament, the shipping industry could be responsible for up to 17% of global carbon emissions by 2050. In comparison, in 2021, the sector contributed to about 3% of worldwide greenhouse gases. This significant increase in carbon emissions by the sector is resulting in increased pressure on the shipping industry to reduce its carbon footprint.

In an attempt to reduce emissions, IMO has adopted the Energy Efficiency Existing Ship Index (EEXI) and the Carbon Intensity Indicator (CII) rating regulations. While the EEXI is a rating system that assesses the energy performance of existing ships based on speed, power, and engine size, the CII rating uses a ranking system to monitor the efficiency of individual ships. Under the CII rating system, each vessel will receive a ranking from A (good) to E (poor) starting in 2023. Ships receiving grade D for three years or Grade E for one year will have to put a corrective action plan in place. These new sets of regulations have been in effect since January 2023 and are a part of IMO’s Greenhouse Gas Strategy (GHG) that aims to reduce the carbon emissions from international shipping by 40% by 2030 and 70% by 2050 compared with 2008 levels.

Shipping is a highly capital-intensive industry with a great dependence on fossil fuels. Most vessels are still dependent on traditional marine fuels and would require significant investment in infrastructure to transition to zero-carbon emission fuels. A 2020 study by the University of Massachusetts estimated the total cost of decarbonization efforts would be about US$1.65 trillion by 2050 to create apt infrastructure to support zero carbon emission fuels. With shipping being the backbone of international trade, trade volumes are expected to grow continuously, resulting in an increase in carbon emission, which will further push industry players to invest in alternative carbon-efficient fuel.

IMO 2023 – Shipping Industry Sailing towards a Greener Future but Unsure of the Route by EOS Intelligence

Alternative fuels have limited availability and cost restrictions

Currently, there are three primary fuels that are used in ships – MDO, MGO, and HFO. All three fuels are made from crude oil and emit carbon when burnt. Hence, the sector is actively looking for alternative fuels to replace these fuels with the introduction of IMO 2023 regulations.

Methanol could be a suitable alternative, but availability could be a challenge

In pursuit of sustainable and greener fuel, the shipping industry is moving towards using other fuels – one of which is methanol. As per a Finland-based technology company Wärtsilä, methanol usage in ships, when compared to HFO, dramatically reduces carbon emissions and is easy to store. Considering this, the shipping giant AP Moller-Maersk, headquartered in Denmark, has ordered 19 methanol-powered vessels. The company estimated that they would require about one million tons of green methanol per year to run these vessels, which will generate annual carbon emission savings of about 2.3 million tons. Another shipping company based in Beijing, China Ocean Shipping Company (COSCO), has ordered 12 container ships worth US$2.87 billion, which use methanol as a fuel.

However, the availability of methanol is also to be considered while assessing it as an alternative fuel. As per the world’s largest methanol producer, Methanex, the shipping industry would require about three million tons of methanol annually to fuel vessels. Therefore, it is not enough to build vessels that run on methanol but also ensure its availability to fuel the vessels.

Keeping such requirements in mind, Maersk has partnered with six companies across the globe to source at least 730,000 tons of methanol annually by the end of 2025. The six companies are CIMC ENRIC (China), European Energy (Denmark), Green Technology Bank (China), Orsted (Denmark), Proman (Switzerland), and WasteFuel (USA). Additionally, in 2018, COSCO partnered with the US-based IGP Methanol and China-based and Jinguotou (Dalian) Development to construct two methanol plants in IGP Methanol’s Gulf Coast Methanol Park. The plants are planned to have a capacity of 1.8 million tons of methanol per year each. COSCO is ensured to fuel its 12 newly ordered vessels through these two partners

Most methanol produced today is derived from fossil fuels. There are primarily three kinds of methanol – grey or brown methanol derived from natural gas, green methanol made from biomass gasification, and blue methanol derived from natural gas combined with carbon capture and storage technology (CCS). With the help of CCS technology, the carbon emitted is captured and later transported and stored deep underground permanently, hence reducing carbon emissions.

Both green and blue methanol are considered to be the most environmentally friendly. However, most methanol available and used currently is either grey or brown. The availability of blue and green methanol is estimated to be less than 0.5 million tons annually in 2022, which is considered to be severely inadequate to power the current fleet of vessels. While Washington-based Methanol Institute estimated that renewable methanol production might increase to over 8 million tons annually by 2027, it is still unlikely to be sufficient to replace diesel as the go-to fuel.

Methanol as a fuel also has its challenges in terms of cost. Depending on the type of methanol consumed, traditional bunker fuels can be up to 15 times more expensive. Assuming the limited availability of methanol, the cost is likely to increase. Further, industry players need to ensure methanol availability and feasibility before switching away from traditional marine fuel.

LNG – most likely a transitional fuel

While some players are looking at methanol as an alternative fuel, other players are considering LNG. LNG is 20-25% less carbon intensive than HFO and emits fewer nitrogen oxides and sulfur oxides.

Rio Tinto, a mining company based in London, announced plans to add nine LNG dual-fueled Newcastlemax vessels in their fleet that transport bulk cargo, such as coal, iron ore, and grain, in 2023. The company started a one-year trial and is already seeing a reduction of about 25% in carbon emissions.

The main driver to convert to LNG fuel is the reduction in fuel costs. According to S&P Global, an energy company based in the UK, LNG prices vary from US$213-$353 as compared with MGO prices, which vary from US$550-$640. While LNG is cheaper, bunkering LNG to the vessel could be a challenging operation as there is a lack of LNG bunkering infrastructure. Another significant drawback in the usage of LNG is methane slip, which is the discharge of unburned methane from an engine that could poison aquatic life.

As per the World Bank, LNG as a marine fuel is most likely to play a limited role, given its drawbacks. However, a combination of lower prices and the increasing number of LNG dual-fueled vessels might support bunkering demand in the future.

Ammonia at the nascent stage of adoption

Unlike LNG, ammonia is turning out to be a viable option as infrastructure is already taking shape. As per a 2020 report by Siemens, a German industrial manufacturing company, 120 ports are already dealing with the import and export of ammonia worldwide. However, even with the infrastructure, only green ammonia is a zero-carbon fuel and it is not produced anywhere at the moment.

Looking at the fuel as an alternative option, Grieg Maritime and Wärtsilä (Norwegian and Finnish shipping companies, respectively) are jointly running a project to launch an ammonia-fueled tanker producing no greenhouse gas emissions by 2024. The project is also being supported by the Norwegian government with a funding of US$46.3 million. The partnership aims to build the world’s first green ammonia-fueled tanker. The partners plan to distribute green ammonia from a factory based in Norway to various locations and end-users along the coast.

There is a wide range of alternative fuels that are yet to be examined from the point of sustainability. Hydrogen is also one of the fuels that is considered an option for shipping vessels.


Read our related Perspective:
 Hydrogen: Future of Shipping Industry?

Other synthetic fuels combining hydrogen and carbon monoxide are also present and are already used extensively in other industries such as agriculture. However, their viability is yet to be tested in the shipping industry. Moreover, transitioning to alternative fuels is not easy. Several factors need to be considered before switching. To be a practical replacement for diesel, it needs to be readily available and price-competitive with traditional fuels.

EOS Perspective

The global shipping sector was already on its toes since the IMO’s 2020 sulfur regulation that limited sulfur content in a ship’s fuel oil to a maximum of 0.5% (from the previous 3.5%). After the IMO’s sulfur regulation, players started to gradually switch to other fuels and phased out high-sulfur fuel oil from their operations. The new 2023 regulation again brings the shipping industry to heel. The key challenge the marine industry faces in decarbonization is the limited availability and high cost of alternative fuels. Additionally, infrastructural changes are also required while adapting to these new fuels. Ship modifications require major capital investments, while construction of new vessels takes several years.

MGO is shipping’s primary fuel today and is hard to match in terms of existing scale and commercial attractiveness as it already is a well-established fuel and has been in use for decades. Other viable fuels, such as methanol, LNG, hydrogen, and ammonia, although present themselves to be better options for achieving IMO’s 2050 target, are likely to be costly and would require a much higher supply to meet the demand to power the vessels. Future fuel scenarios are likely to be determined by both supply and demand side dynamics.

For now, the key question for the players remains the availability of cleaner fuels at a cost that is acceptable and has the potential to replace traditional fuels. This further opens up the scope for partnerships between the players and fuel producers to jointly build a roadmap to ascertain fuel availability and bunkering infrastructure. With the players already moving towards adopting cleaner fuels, it is safe to infer that more partnerships between the fuel producers and the players are likely to be seen in the sector in the years leading towards meeting IMO’s 2050 target.

by EOS Intelligence EOS Intelligence No Comments

Commercial Nuclear Fusion – Reality or a Fairy Tale?

388views

Nuclear fusion has recently gained attention as a potential source of clean energy. It was a result of the US National Ignition Facility in California achieving a major milestone in December 2022 in which researchers were able to produce more energy than was used to ignite it for the first time. Several countries are cooperating in the world’s largest fusion experiment project called ITER, focused on the construction and operation of an experimental fusion reactor located in France. Large-cap companies such as Google and the ministries regulating energy policies across the globe are also investing in fusion energy projects and start-ups to promote fusion energy generation. Despite huge investments, commercializing fusion energy still has a long way to go due to certain technological and operational challenges associated with the generation of this type of energy.

Ever-increasing carbon emissions due to the ongoing rise in energy consumption are driving the need for accelerating energy generation from renewable sources. As of October 2022, over 40% of global carbon emissions were caused by power generation. As per the International Energy Agency, carbon emissions from energy generation increased by 0.9% in 2022, in comparison with 2021, to reach 36.8GT.

Additionally, the energy crisis caused by the Russia-Ukraine war, particularly in Europe, further augmented the need for energy generation using renewable sources. The surge in energy demand from households and industries is putting pressure on the existing energy supplies, thus resulting in high energy prices.

So far, solar and wind energy sources have been prominently used across countries to meet the rapidly increasing energy demand. Nuclear fusion is another alternative renewable source as it does not emit carbon emissions or produce long-lived radioactive waste products, unlike nuclear fission.

Nuclear fusion is an energy-intensive process and requires high temperatures for fusion reaction. In the nuclear fusion process, energy is released by combining two atomic nuclei into one heavier nucleus. The released energy is then captured and converted into electricity by a fusion machine. This process is also the key source of energy in the sun and other stars.

Nuclear fusion releases around four million times more energy as compared to coal, gas, or oil, and four times more than nuclear fission technology. Nuclear fusion can provide energy to an extent that can power up homes, cities, and whole countries.

Current state of the nuclear fusion energy

The potential of generating nuclear fusion energy has been recognized since the 1950s. Countries across geographies have been involved in nuclear fusion research, led by the EU, USA, Russia, and Japan, along with vigorous programs underway in China, Brazil, Korea, and Canada. Various experimental fusion devices have been designed and constructed to advance and transform the way fusion energy is generated. These include tokamaks, stellarators, and laser-based technology devices. Tokamaks and stellarators have been used more commonly for fusion energy research experiments.

Some of the tokamaks and stellarators built across countries for generating fusion energy include the Joint European Torus (JET), started in the UK in 1978, the Wendelstein 7-X stellarator, started in Germany in 1994, Korea Superconducting Tokamak Advanced Research (KSTAR) started in South Korea in 1995, the Mega Amp Spherical Tokamak- (MAST) initially started in the UK in 1997 and further upgraded to MAST-U in 2013, and Experimental Advanced Superconducting Tokamak (EAST) started in China in 2000, among others. Six countries, including China, India, Japan, Korea, Russia, the USA, as well as the EU, are cooperating in the world’s largest fusion experiment, ITER, an experimental fusion reactor currently under construction in France through EURATOM, the European Atomic Energy Community. ITER idea was first launched in 1985 and established in 2007. Its first experiment was scheduled to start in 2025 but is delayed due to Covid-19 disruptions. It is aimed at producing 500MW of fusion power from 50MW of input heating power.

Further, in 2017, China launched the China Fusion Engineering Test Reactor (CFETR) project as a follow-up to the ITER. This tokamak device is aimed at producing an extremely powerful magnetic field to confine plasma and generate fusion energy. This magnetic field can contain and control hydrogen gas ten times hotter than the core of the sun. CFETR is aimed at producing a peak power output of 2GW once completed in 2035, bridging the gap between scientific experiments and commercial use.

Extensive progress has been noticed in studying laser-based technology for fusion energy generation. Some of the facilities that use laser technology to produce fusion energy include the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in the USA and the Laser Mégajoule (LMJ) in France.

The International Atomic Energy Agency (IAEA) also supports its member states in research activities related to fusion energy generation. It also organizes various workshops on fusion power plant concept demonstrations, technical meetings, and coordinates research activities.

Nuclear Fusion – Reality or a Fairy Tale?by EOS Intelligence

Nuclear Fusion – Reality or a Fairy Tale? by EOS Intelligence

Some of the breakthroughs achieved in fusion energy experiments to date

There has been significant progress in the research and development activities focused on nuclear fusion energy generation. Researchers are continuously emphasizing optimizing the condition of plasma through changes in density, temperature, and confinement time to achieve the required level of performance for a power plant. Several nuclear reactors were able to sustain high temperatures during the fusion process. For instance, in January 2022, the EAST reactor in China sustained temperatures of 126 million degrees Fahrenheit, which is nearly five times hotter than the sun, for 17 minutes, and thus, broke the record for longest sustained nuclear fusion.

In February 2022, the Joint European Torus (JET) achieved a record performance for sustained fusion energy of 59MJ over five seconds.

Also, in September 2022, the Korea Superconducting Tokamak Advanced Research (KSTAR) experiment achieved plasma temperatures of 120 million kelvins for up to 20 seconds, a key demonstration of simultaneous high temperatures and plasma stability.

Recently, in December 2022, a major breakthrough was achieved at the US National Ignition Facility in California by using inertial confinement fusion, which released more energy than was pumped in by the lasers for the first time in the world. The laser shot released 3.15MJ of energy in comparison with the 2.05MJ pumped to the hydrogen isotope pellet by lasers. This breakthrough is likely to pave the way for abundant clean energy in the future.

Breakthroughs driving further investment in fusion energy R&D

Breakthroughs achieved over the past years in various projects have attracted significant investment by both the government and private sector in the research and development of fusion energy. For instance, in February 2023, Israel’s Ministry of Energy (MoE) proposed to provide US$11.5 million to establish a national nuclear fusion institute in Israel. This initiative includes major universities of Israel, namely the Hebrew University of Jerusalem, Ben-Gurion University of the Negev, the Technion and Tel Aviv University, the Weizmann Institute of Science, as well as NT-Tao, an Israel-based start-up which is engaged in the development of a compact system for nuclear fusion.

Similarly, in October 2022, the UK government announced to provide US$249.6 million of funding for the Spherical Tokamak for Energy Production (STEP) project’s first phase, which will include concept design by the UK Atomic Energy Authority by 2024. STEP is a program aimed at designing and constructing a prototype fusion energy plant by 2040.

In March 2022, the US Department of Energy (DOE) proposed to provide around US$50 million of federal funding to support US scientists involved in conducting experimental research in fusion energy science. Of this, US$20 million was to support tokamak facilities and US$30 million to support fusion research to improve the performance of fusion and increase the duration of burning plasma. In addition to this, the US government’s budget for the financial year 2023 included US$723 million for the Office of Science Fusion Energy Sciences research in enabling technologies, materials, advanced computing and simulation, and new partnerships with private fusion efforts. This amount included US$240 million for the ongoing construction of ITER tokamak. Also, the budget for the financial year 2024 includes US$16.5 billion to support climate science and clean energy innovation, including US$1 billion to advance fusion energy technology.

Private funding in fusion companies has also increased significantly in the recent past. As per the Fusion Industry Association Report 2022 published in July, private sector funding amounted to about US$4.8 billion in total, witnessing an increase of 139% since 2021. Fusion companies also received an additional US$117 million in grants and other funding from governments. Big resource groups such as Equinor, based in Norway, Google, and Chevron, based in the USA, have also invested in fusion energy research. For instance, in July 2022, Chevron, together with Google and Japan-based Sumitomo Corporation, invested in TAE Technologies, a US-based nuclear fusion start-up, in a US$250 million fundraising round to build its next-generation fusion machine.

In addition to this, entrepreneurs, including Bill Gates and Jeff Bezos, are also providing financial support. In December 2021, Commonwealth Fusion Systems (CFS) raised around US$1.8 billion in series B funding from various key investors, including Bill Gates, DFJ Growth, and Emerson Collective, among others, to commercialize fusion energy.

Companies engaged in nuclear fusion energy generation

More than 35 companies are engaged in fusion energy generation for commercial use, such as Tokamak Energy, General Fusion, Commonwealth Fusion Systems, Helion Energy, Zap Energy, and TAE Technologies, among others. These fusion companies are increasingly emphasizing collaborations and experimenting with new technologies to produce fusion energy and make it available for commercial use.

In March 2023, Eni, an energy group based in Italy, and Commonwealth Fusion Systems (CFS) based in the USA, a spin-out of the Massachusetts Institute of Technology (MIT), signed a collaboration agreement aimed at accelerating the industrialization of fusion energy.

In February 2023, TAE Technologies achieved a breakthrough in its hydrogen-boron fusion experiment in magnetically confined fusion plasma. This experiment was a collaboration between Japan’s National Institute for Fusion Science (NIFT) and TAE Technologies.

Also, in February 2023, Tokamak Energy proposed to build a new fusion energy advanced prototype at the United Kingdom Atomic Energy Authority’s (UKAEA) Culham Campus, UK, using power plant-relevant magnet technology. It also built the first set of high-temperature superconducting magnets for testing nuclear fusion power plants. This supermagnet can confine and control extremely hot plasma created during the fusion process.

Certain breakthroughs achieved over the years in the nuclear fusion energy field have encouraged the entry of various start-ups across geographies. For instance, Princeton Stellarators, a US-based start-up focused on building modular, utility-scale fusion power, was founded in 2022. Another start-up named Focused Energy, a Germany-based fusion company, was founded in 2021 to develop a fusion power plant based on laser and target technology. In September 2021, the company raised US$15 million in seed funding led by Prime Movers Lab, along with additional investment from various entrepreneurs.

Start-ups are also emphasizing raising funds to create new fusion technologies and make a significant impact on the industry. In February 2023, NT-Tao, an Israel-based nuclear fusion start-up founded in 2019, raised US$22 million in a series A funding round aimed at developing a high-density, compact fusion reactor to provide clean energy.

Additionally, in January 2023, Renaissance Fusion, a France-based start-up founded in 2020, raised US$16.4 million in a seed funding round led by Lowercarbon Capital. The company is engaged in the development of a stellarator reactor for fusion energy generation.

Challenges to nuclear fusion energy generation

Although a lot of companies and governments across geographies are investing in nuclear fusion energy generation experiments, building full-scale fusion-generating facilities requires advanced engineering, advanced vacuum systems, and superconducting magnets. One of the key challenges in the fusion process is the requirement of extremely high temperatures to produce energy. Also, it becomes difficult to control plasma at such high temperatures.

Additionally, the lack of availability of materials that can extract heat more effectively while withstanding their mechanical properties for a longer duration is another challenge affecting the fusion energy generation process.

Moreover, fusion research projects are also facing capital and financing challenges due to high upfront costs, return uncertainty, and long project duration. The capital investment involved in building and operating a fusion reactor is high due to complex technology that requires significant investment in R&D, high energy requirements, use of advanced materials, and regulatory requirements aimed at ensuring the safety and low environmental impact of the fusion reactor. The cost of building a fusion reactor ranges between tens to hundreds of billions of dollars. It can vary depending on various factors such as size, design, location, materials, and technology used.

Since fusion energy is a new technology, there is uncertainty about when nuclear fusion will become a viable and cost-effective energy source, such as other energy sources, including wind and solar. This makes it difficult for investors to invest in fusion projects and predict the return on investment.

However, ongoing research and development activities aimed at building advanced, highly efficient, and cost-effective fusion reactors and commercializing fusion energy generation at a large scale are likely to overcome these challenges in the long term.

EOS Perspective

Accelerating climate crisis is driving the investment in nuclear fusion research and development as it does not create carbon emissions and long-lasting nuclear waste products. Over the past several years, various fusion research projects, university programs, and start-ups have achieved breakthroughs in the fusion energy field. The most recent breakthrough at the US National Ignition Facility in California, which released more energy than was pumped in by the lasers, has paved the way to the nuclear fusion gold rush and sparked excitement among investors, companies, and researchers.

Many fusion companies, such as Commonwealth Fusion Systems and TAE Technologies, are claiming to exceed breakeven by 2025 and commercialize fusion energy by 2030. Billions of dollars have been invested in nuclear fusion energy generation experiments but no company or projects have been able to achieve breakeven yet.

Several new fusion projects are planning on using advanced materials and putting a new generation of supercomputers to tweak the performance of ultrahigh-temperature plasma, but commercializing fusion energy is still far from reality. Moreover, the fusion process is very complex, requires extreme temperatures for fusion reactions, and involves huge energy costs. Thus, alternative clean energy sources such as wind and solar will likely remain the near-term methods to meet sustainable energy demand. At the same time, it should be expected that the increasing government support and investment by large cap organizations and entrepreneurs are likely to help set up viable fusion power plants in the future.

by EOS Intelligence EOS Intelligence No Comments

UK Paves The Way for A Greener and Carbon-Free Future

404views

The UK is working to create a policy for building a more sustainable future for itself through the New Green Industrial Revolution, aiming to attain net-zero emissions in the UK by 2050. As the country separated itself from the EU through Brexit, it is also setting its own environmental goals and in that, its own version of the EU’s 2019 Green Deal (we wrote about it in The EU Green Deal – Good on Paper but Is That Enough? in March 2020). With highly ambitious targets, the proposed investments are worth GBP12 billion, creating 250,000 jobs in the process. While this seems like a promising funds allocation, the plan’s success will actually depend on significant investments in next-generation technologies, which have currently not been proven commercially. Moreover, a lot will depend on an equal involvement from the private sector that might be more cautious with investments than the public sector.

The UK is in a bid to position itself at the forefront of global markets for green energy and clean technologies. To achieve this, it proposed a 10-point Green Industrial Revolution in November 2020, which aims to mobilize GBP12 billion funds and create 250,000 jobs in the UK. Through this plan, the UK aims to achieve net zero carbon emissions by 2050. The key areas covered under the plan include offshore wind, hydrogen, nuclear, electric vehicles, public transport, jet zero and greener maritime, homes and public buildings, carbon capture, nature, and innovation and finance.

UK Paves The Way for A Greener and Carbon-Free Future

Offshore wind

The new Green Industrial Revolution outlines the UK government’s commitment to put offshore wind energy at the forefront of the country’s electricity needs. It has increased the offshore wind targets from previous 30GW to 40GW by 2030, aiming to produce enough energy to power all homes in the UK by 2030.

In addition to this, the government plans investments of about GBP160 million to upgrade ports and infrastructure in localities that will accommodate future offshore wind projects (e.g. Teesside, Humber, Scotland, and Wales).

This investment in developing offshore wind energy is expected to support about 60,000 direct and indirect jobs by 2030 in construction and maintenance of sites, ports, factories, etc.

While the government’s plan is great on paper, meeting the 40GW target will require 4GW of offshore wind projects to be commissioned every year between 2025 and 2030, which is extremely ambitious and challenging. Moreover, just developing offshore wind projects will not be enough until works are also done to update the electricity grid. Further, the target 40GW generation is calculated based on current electricity demand by households, which in reality is bound to increase as a shift towards electric vehicles is being encouraged.

Hydrogen

With the help of industry partners, the UK government plans to develop 5GW of low carbon hydrogen production capacity by 2030 for industries, transport, and residences. The government is expected to publish a dedicated Hydrogen Strategy in 2021, to position the UK as a front runner in production and use of clean hydrogen. It plans to develop 1GW (of the planned 5GW) hydrogen production capacity by 2025.

A central part of the UK’s Hydrogen Strategy is expected to have hydrogen potentially replace natural gas for the purpose of heating. The government is undertaking hydrogen heating trials, commencing with building a ‘Hydrogen Neighborhood’ and potentially developing a plan for the first town to be heated completely using hydrogen by 2030.

In addition to this, works with industry partners are under way to develop ‘hydrogen-ready’ appliances in 2021, such that new gas boilers can be readily converted to hydrogen if any future conversion of the gas network is commissioned. To facilitate this, the government is working with Health and Safety Executives to enable 20% hydrogen blending in the gas network by 2023. However, this is subject to successful trials.

In transportation, an investment of GBP20 million in 2021 is planned to test hydrogen and other zero emission freight truck technologies in order to support the industry in developing zero-emission trucks for long-haul road freight.

To achieve these targets, a GBP240 million Net Zero Hydrogen Fund is planned to be set up. It will provide capital co-investment along with the investment from private sector to develop various technologies. These will include carbon capture and storage infrastructure for the production of clean hydrogen that can be used in home, transport, and industrial requirements. The policy is expected to support 8,000 jobs by 2030 and push private investment worth GBP4 billion by 2030.

However, the government’s ambitious 2030 hydrogen policy requires significant investment and participation from the private sector. While several global companies such as ITM Power, Orsted, Phillips 66, etc., have come together to collaborate on the Gigastack project in the UK (which aims to produce clean hydrogen from offshore wind), such private participation will be required on most projects to make them feasible and meet the targets.

Nuclear power

In search of low-carbon electricity sources, UK plans to invest in nuclear energy. In addition to development of large-scale nuclear plants, the investments will also include small modular reactors and advanced modular reactors.

To this effect, the government has set up a GBP385 million Advanced Nuclear Fund. Of this, GBP215 million is to be used towards small modular reactors, i.e., to develop a domestic smaller-scale nuclear power plant technology that could be built in factories and assembled on site. Apart from this, GBP170 million is to be used towards research and development of advanced modular reactors. These are reactors that could operate at over 800˚C, and as a result, unlock efficient production of hydrogen and synthetic fuels. These are also expected to complement the government’s other investments and initiatives with regards to hydrogen and carbon capture.

While the government expects the design and development of small modular reactors to result in private sector investment of up to GBP300 million, these next generation small reactors are currently considered a long shot as no company has created them yet. While Rolls Royce has offered the government to design one, it is conditional on them receiving a subsequent order worth GBP32 billion for 16 such reactors as well as the government paying half of the GBP400 million design cost.

Moreover, nuclear power plants are expensive and long-term investments and are considered to be one of the most expensive sources for power. Thus it is very important to evaluate their economic feasibility. While the government is bullish on the role of nuclear power in decarbonizing electricity, it is very important for large-scale projects to be economical, while small-scale projects still remain at a conceptual stage.

Electric vehicles

It is estimated that cars, vans, and other road transport are the single largest contributor to the UK’s carbon emissions, making up nearly one-fifth of all emissions emitted. Thus the government is committed to reducing carbon emissions produced by automobiles. To achieve this, the country plans to ban the sale of all new petrol and diesel cars and vans by 2030 (10 years earlier than initially planned). However, hybrid cars will be allowed to be sold till 2035.

The government has planned a support package of GBP2.8 billion for the country’s car manufacturing sector, which in turn is expected to create about 40,000 employment opportunities up till 2030. Of this, GBP1 billion will be used towards the electrification of vehicles, including setting up factories to produce EV batteries at scale. In addition to this, GBP1.3 billion is planned to be spent to set up and enhance charging infrastructure in the country by installing a large number of charge points close to residential areas, office and commercial spaces, highways, etc., to make charging as convenient as refueling. The government plans to have a network of 2,500 high-power charging points by 2030 and about 6,000 charging points by 2035. Lastly, grants are planned to the tune of about GBP582 million up till 2023 to reduce the cost of EVs (cars, vans, taxis, and two-wheelers) for the consumer. In addition to the investment by the government, private investment of about GBP3 billion is anticipated to trickle into the sector by 2026.

While this is considered to be a very important step in the right direction, it is estimated that it will still leave about 21 million polluting passenger vehicles on the UK roads by 2030 (in comparison to 31 million in 2020). Moreover, the government continues to allow the sale of hybrid cars for another five years beyond 2030, which means that carbon emissions-producing vehicles will still be added to UK roads even after the target dates set in the New Green Industrial Revolution plan.

Green public transport

In addition to reducing carbon emissions from passenger cars, the government also wants to make public transport more approachable and efficient. It plans to spend about GBP5 billion on public transport buses, cycling- and walking-related initiatives and infrastructure.

In addition, funding of GBP4.2 billion is planned on improving and decarbonizing the cities’ public transport network. This will include electrifying more railway lines, integrating train and bus network through smart ticketing, and introducing bus lanes to speed up the journey. The plans also include investment in about 4,000 new zero-emission buses in 2021, as well as funding two all-electric bus towns (Coventry and Oxford) and a completely zero-emission city center. While York and Oxford have shown interest in becoming the UK’s first zero-emission city center, the government has not yet formally announced the city for the same.

Improvements in public transport networks in other cities are also planned to bring them on par with London’s system. A construction of about 1,000 miles of segregated cycle lanes is in plans to encourage people to take up this mode of transportation for shorter distances.

While it is expected these investments will encourage people to use public transport more, the current COVID pandemic has created apprehensions when considering such shared transportation. Although this is expected to be a short-term challenge, it may be a slight damper to the government’s plan for the next year or so.

Jet zero and green ships

Apart from road transport, the government also aims at decarbonizing air and sea travel. It plans to invest GBP15 million in FlyZero – a study by Aerospace Technology Institute (ATI) aimed at identifying and solving key technical and commercial issues in design and development of a zero-emission aircraft. Such an aircraft is expected to be developed by 2030. In addition to this, the government plans to run a GBP15 million competition for the development of Sustainable Aviation Fuel (SAF) in the UK. The plans also include investing in upgrading airport infrastructure so that it can service battery and hydrogen fueled aircrafts in the future.

In addition to aviation, the government is also investing GBP20 million in the Clean Maritime Demonstration Programme to develop clean maritime technology.

While the plans to develop greener fuel for aircraft and ships is a step in the right direction, it is still somewhat of a long shot as a lot more investment is required into this than proposed. Moreover, the shipping industry in particular has shown little interest in wanting to reform in the past and it is likely that both the sectors will continue to follow international standards (that are high in carbon emissions) to remain competitive globally.

Greener buildings

The UK has a considerable number of old and outdated buildings that the government wants to put in the center of its Green Industrial Plan, thus making existing and new buildings more energy efficient. The plan is to slowly phase out carbon-heavy fossil fuel boilers currently used for heating buildings and instead promote the use of more carbon efficient heat pumps. For new buildings, an energy efficiency standard is to be developed, known as the Future Home Standard. To achieve this, the domestic production of heat pumps needs to be ramped up, so that 600,000 heat pumps are installed annually by 2028. This is expected to support about 50,000 jobs by 2030. In addition to this, the government is providing GBP1 billion to extend the existing Green Home Grant (launched in September 2019) by another year, which is aimed at replacing fossil fuel-based heating in buildings with more energy efficient alternatives.

While the subsequent shift to heat pumps from gas boilers will definitely help reduce the buildings’ carbon footprint, heat pumps are currently much more expensive and more difficult to install. Thus, the government must provide ongoing financial incentives for consumers to make the switch.

Carbon capture, usage, and storage

Carbon capture, usage, and storage (CCUS) technology captures carbon dioxide from power generation, low carbon hydrogen production, and industrial processes, and stores it deep underground, such that it cannot enter the atmosphere. In the UK, it can be stored under the North Sea seabed. A the technology has a critical role to play in making the UK emission free, a GBP1 billion investment is planned to support the establishment of CCUS in 4 industrial clusters by 2030 to capture 10Mt of carbon dioxide per year by 2030. Developed alongside hydrogen, these CCUS will create ‘SuperPlaces’ in areas such as the North East, the Humber, North West, Scotland, and Wales. The development of the CCUS is expected to create 50,000 jobs by 2030.

CCUS is a very new technology, with no large-scale or commercially successful projects operational across the world. While the technology has been proved in pilot projects, its feasibility is yet to be seen. Also, a significant amount of private investment will be required to carry through the proposed project. While some private players, such as Tata Chemicals Europe have begun constructing the first industrial-scale CCU plant (expected to capture 40,000 tons of CO2 per year) in Northwich, the government needs several more private players to step up to meet its ambitious targets.

Nature

In addition to the above mentioned programs, the government plans to safeguard and secure national landscapes as well as restore several wildlife habitats to combat climate change. To achieve that, it plans to reestablish several of the nation’s landscapes under National Parks and Areas of Outstanding Beauty (AONB), as well as create new areas under these two heads. The National Parks and AONB program is expected to add 1.5% of natural land in the UK and will help the government in reaching the target of bringing 30% of the UK’s land under protected status by 2030.

In addition to this, the government plans to invest GBP40 million in nature conservation and restoration projects, which in turn is expected to create several employment opportunities across the country. Moreover, it plans to invest GBP5.2 billion over six years into flood defenses, which will help combat floods and damage to homes as well as natural environment. This is also expected to create about 20,000 jobs up till 2027.

Green finance and innovation

The last agenda on the 10-point Green Industrial Revolution entails developing new sources of financing for supporting innovative green technologies. To this effect, the government has committed an R&D investment of 2.4% of its GDP by 2027. This will extensively be used towards developing high risk, high reward green technologies, which will help the UK attain net zero emissions by 2030.

Additionally, the government launched a GBP1 billion Net Zero Innovation Portfolio that will focus on commercialization of low-carbon technologies mentioned in the 10-point agenda, including development of floating offshore wind, nuclear advanced modular reactors, energy storage, bioenergy, hydrogen, greener buildings, direct air capture and advanced CCUS, industrial fuel switching, and other disruptive technologies. In November 2020, the government launched the first phase of this investment, GBP100 million, towards greenhouse gas removal and in the coming year it plans to invest another GBP100 million towards energy storage. It also plans to invest GBP184 million for fusion energy technologies and developing new fusion facilities. Moreover, GBP20 million will be directed towards development and trials of zero emission heavy goods vehicles.

Apart from this the government plans to issue the UK’s first Sovereign Green Bonds in 2021. These bonds, which are likely to be first of many, are expected to finance sustainable and green projects and facilitate the creation of ‘green jobs’ in the country. Furthermore, similar to the EU Green Deal, the government plans to implement a green taxonomy, which helps define economic activities into two categories – the ones that help limit climate change and others that are detrimental to the environment – to help investors make better investment choices.

EOS Perspective

The UK’s Green Industrial Revolution seems to be a comprehensive policy with a multi-pronged approach to tackle climate change, promote green technology and investments, and achieve net zero emissions by 2050. With Brexit in action, it seems like a worthy counterpart to the EU’s Green Deal, which the UK was initially a part of. Moreover, it is an important framework for the UK to show its commitment towards controlling climate change, especially with the country hosting the upcoming 26th session of the Conference of the Parties (CoP 26) to the United Nations Framework Convention on Climate Change summit in Glasgow in 2021.

However, currently the UK’s Green Industrial Revolution is not a legally binding policy document but more of a proposal, which would need to go through several legislative procedures to become binding. Moreover, while the plan is ambitious, it depends heavily on next generation innovative technologies that require hefty investments to achieve the targets. Thus, its success depends on whether the government is seriously committed and prepared to spend heavily on commercializing these technologies along with managing to attract significant amount of private investment to complement own efforts. While few aspects of the 10-point approach have already received investment from the private sector and first phase of funding from the government, it is yet to be seen if the UK’s ambitious net zero emission goals are truly feasible.

by EOS Intelligence EOS Intelligence No Comments

The EU Green Deal – Good on Paper but Is That Enough?

859views

The EU, which has always been ahead of the curve in tackling climate change and ensuring emission control, has rolled out a new EU Green Deal in December 2019. The Green Deal is the most ambitious environmental policy devised by the EU and encompasses several targets and policy measures that will require a complete overhaul in how business across sectors is currently done in the region.

In the beginning of December 2019, European Commission President, Ursula von der Leyen, unveiled a suite of policies known as the EU New Green Deal and called it Europe’s ‘man on the moon moment’. EU’s Green Deal is aimed at decarbonizing the economy and encompasses a host of policy measures including a plan to ensure EU reaches net-zero emissions by 2050.

To this effect, it has also increased its carbon emission reduction targets from 40% to 55% for 2030. This is the ubiquitous goal for the Commission and all its measures and policies are to be aligned to achieve this objective. Thus, the EU Commission is expected to review and align laws and regulations, such as the Renewable Energy Directive, Energy Efficiency Directive, and Emissions Trading Directive among many others, over the next couple of years to ensure that they are tuned to support the ambitious climate goals. Moreover, taxation will also be aligned with climate objectives to ensure effectiveness.

Policy measures

In order to achieve this objective of carbon neutrality, the EU Commission is focusing on energy efficiency since the production and use of energy across the EU states accounts for 75% of EU’s greenhouse gas emissions. The EU member states are revising their energy and climate plans to ensure higher dependence on renewable sources (especially offshore wind energy production) and phasing out coal and gas-based energy. Moreover, the Commission has also guided member states to review and update their energy infrastructure to ensure the use of innovative and energy-efficient technologies such as smart grids and hydrogen networks.

The Commission is also working towards adopting a new EU industrial strategy along with a new circular economy action plan. The plan will focus on decarbonizing and modernizing several energy-intensive industries, such as steel, chemicals, and cement. It will also include a ‘sustainable product policy’ that will prioritize reducing and reusing materials before recycling them. Moreover, while the circular economy action plan will be applied across all sectors, it will be most relevant for resource-intensive sectors such as textiles, construction, electronics, and plastics.

The plan will focus on fostering new business models that drive sustainable use of resources, set regulations and minimum standards to prevent environmentally harmful products from being sold in EU markets, as well as set a regulatory framework to ensure that all packaging in the EU is reusable or recyclable in an economically viable manner by 2030. In addition to this, the Commission aims at achieving ‘clean steelmaking’ by 2030 by using hydrogen for the process and introduce new legislation by 2020 to ensure that all batteries are reusable and recyclable.

Understanding that construction, use, and renovation of buildings account for a significant part (about 40%) of energy consumed in the EU, the Commission aims at improving energy efficiency in this sector by focusing on more frequent renovations. A quicker renovation rate helps improve the energy performance of buildings and is effective in lowering energy bills and reducing energy poverty. Currently, the annual renovation rate of buildings in the EU states ranges between 0.4% and 1.2%. However, the Commission is looking to at least double the renovation rate to reach its energy efficiency and climate objectives.

In addition to this, the Commission is also working towards curbing carbon emissions from transportation, which accounts for about 25% of EU’s total greenhouse gas emissions. In order to achieve carbon neutrality by 2050, the current transport emission levels would be needed to be cut down by about 90%. To attain this, the Commission has planned for significant investment in boosting electric vehicles and plans to deploy 1 million public recharging stations across the EU states by 2025. Moreover, in July 2021, the Commission plans to revise the legislation on CO2 emission performance standards for cars and vans to achieve its target of zero-emission mobility by 2025.

With regards to commercial transport, the EU Commission aims at pushing automated and digitized multimodal transport. It aims at shifting 75% of inland freight currently carried by road to rail and inland waterways. Moreover, it aims at deploying smart traffic management systems and sustainable mobility services that will facilitate a reduction in congestion and pollution.

The EU Green Deal – Good on Paper but Is That Enough by EOS Intelligence

The Commission also plans to align agriculture and food production with its climate goals. To this effect, the Commission is expected to present a ‘Farm to Fork’ strategy in spring 2020, which aims to introduce and strengthen policies in the agriculture and fisheries space so that they are well equipped to tackle climate change and preserve biodiversity. As per the Commission’s new proposal, 40% of the agricultural policy’s budget and 30% of the maritime fisheries fund within the EU 2021-2027 budget will contribute to climate action and objectives. In addition to this, the ‘Farm to Fork’ strategy aims at significantly reducing the use of chemical pesticides, fertilizers, and antibiotics and in turn increase the area under organic farming.

In addition to agriculture, the EU Commission also aims at preserving and restoring biodiversity. To this effect, the Commission will present a new ‘Biodiversity Strategy’ by March 2020, which will be shared at the UN Biodiversity Summit to be held in China in October 2020. The biodiversity strategy is expected to be brought to action in 2021 and will cover measures aimed to address the key drivers of biodiversity loss such as soil and water pollution. The policy will also encompass a new EU forest strategy that will focus on afforestation, forest preservation, and restoration, which in turn will increase CO2 absorption and aid EU’s ambitious climate goals.

Lastly, the EU Commission plans to reach a ‘pollution-free environment’ by 2050. For this purpose, it plans to review and revise measures that monitor pollution from large industrial installations. Moreover, to ensure a toxic-free environment, the Commission will present a sustainable chemicals strategy that will protect the environment (and citizens) against hazardous chemicals and encourage innovation for the development of safe and sustainable alternatives.

Global trade

The EU’s Green Deal is ambitious, with measures in place to achieve this goal. However, the economic bloc cannot realize this goal in isolation. To get other countries to act on climate change and also prevent the influx of cheaper imports from countries that do not have similar strict policies on carbon emissions, the EU plans to propose a border adjustment carbon tax. This carbon tax is expected to be introduced by 2021 with an initial focus on industries such as steel, cement, and aluminum. The tax may hamper imports from the USA and China as well as smaller countries that cannot afford such climate-based policy measures. However, there is still some ambiguity regarding the tax as it may breach WTO rules, which require equal treatment for similar products, whether domestic or international.

Investment

To achieve this arduous goal, the EU will require a significant amount of additional investment. For starters, the Commission will require additional investment of about EUR260 billion (~US$288 billion) per annum only to achieve the 2030 goal (of reducing carbon emissions by 55%). This is about 1.5% of the EU’s 2018 GDP. Thus it is safe to assume that the investment required for achieving zero emissions by 2050 will be much higher.

The magnitude of the investment requirement will call for participation from both the public and private sector. To achieve this, the commission will present a Sustainable Europe Investment Plan, which will help meet the additional funding needs. The Plan will provide dedicated financing to support sustainable projects in addition to building a proposal for an improved regulatory framework. The commission has also proposed to dedicate at least 25% of the EU’s long-term budget towards achieving climate-based objectives. Moreover, the European Investment Bank (EIB), which has about EUR550 billion funds in its balance sheet, has also pledged to increase its lending towards green projects, thereby becoming a climate bank of sorts. While EIB is already in the process to phase out financing fossil fuel dependent projects by 2021, the bank aims for 50% of its financing to go towards green projects by 2025 (up from 28% in 2019).

In order to ensure an easy and fair transition to climate neutrality, the Commission plans to mobilize a EUR100 billion fund to help regions most dependent on fossil fuels or carbon-intensive sectors. The fund, also called the ‘Just Transition Mechanism’ fund will be funded from the EU’s regional policy budget as well as the EIB. The fund will be used primarily to support and protect citizens most vulnerable to the transition by providing access to re-skilling programs, technical assistance, jobs in new sectors, or energy-efficient housing.

Moreover, the Horizon Europe research and innovation program will also contribute to the Green Deal. As per a new agreement between the EU members in May 2019, 35% of the EUR 100 billion (US$110 billion) research budget for 2021-2027 will be used for funding clean tech and climate-related projects.

With regards to the private sector participating in this green transition, the commission will present a Green Financing Strategy in Q3 2020, which is expected to incentivize the private sector to invest in sustainable and green projects.

To this effect the Commission has created a classification system that for the first time defines what is considered as ‘green projects’ or ‘sustainable economic activities’. This classification is also termed as the ‘green list’ or ‘taxonomy’. This will help redirect private and public capital to projects that are actually sustainable and in turn help the transition to climate neutrality and prohibit ‘greenwashing’, i.e. the practice of marketing financial products as ‘green’ or ‘sustainable’ when actually they do not meet basic environmental standards.

Moreover, it will be made mandatory for companies and financial institutions to provide full disclosure on their climate and environmental impact to clearly lay out how their portfolio stands with regards to the set taxonomy criteria. This is expected to not only increase the transparency of the financial markets but also steer more private investments towards financing an economy that is aligned towards a green transition.

 

The Taxonomy Criteria

The EU Commission set out a basic framework to define what can be termed as a sustainable economic activity. It sets out six environmental objectives and four requirements that need to be complied with in order to make it to the green list.

Six objectives are as follows:

1.       Climate change mitigation

2.       Climate change adaptation

3.       Sustainable use and protection of water and marine resources

4.       Transition to a circular economy

5.       Pollution prevention and control

6.       Protection and restoration of biodiversity and ecosystems

 

Four requirements that need to be met to qualify are as follows:

1.       Must provide a substantial contribution to at least one of the six environmental objectives

2.       Must not provide ‘any significant harm’ to any of the other environmental objectives

3.       Must have compliance with robust and science-based technical screening criteria

4.       Must have compliance with minimum social and governance safeguards

While this provides a general framework, detailed rules and thresholds along with a list of sustainable economic activities will be assessed and developed based on recommendations from a ‘Technical Expert Group on Sustainable Finance’, which is advising the European Commission on this matter.

 EOS Perspective

The Green Deal makes EU the world’s largest economic bloc to adopt such ambitious measures that aim to cease or offset all emissions created by them by mid-century. As per climate scientists, this is necessary to ensure that global temperatures do not rise by more than 1.5-2˚C above the 1990 levels.

While these goals sound promising, they are rarely achieved because they are usually not binding. However, in this case the commission announced that the net-zero emission target would be made legally binding. While that does make achieving the Green Deal objectives more promising, many experts still remain skeptical about the bloc’s capability to achieve it. This is given the fact that the EU has failed to meet 29 (out of 35) environmental and climate targets for 2020. These include energy savings, air, water, and soil pollution, etc.

Moreover, the plan can only be achieved if the EU Council, Commission, and the Parliament, come together and work in tandem and in a timely manner and also work individually with member states to ensure guidelines are converted into actions. For instance, currently CO2 are taxed at different levels across member states (EUR 112 (US$123) per ton in Sweden, EUR 45 (US$50) per ton in France and tax-exempt in Germany). To get all member states to agree at a common point and have a pan-EU strategy is a difficult task. Thus, while the EU has devised an all-encompassing strategy and dedicated significant funds to the same, results will only materialize if there is inclusive and credible implementation of the plans.

In addition to this, there is also some criticism of the policy at a global level, with some nations indicating that it has more to do with protectionism rather than climate goals, owing to its policy on border adjustment carbon tax. Since the EU has more measures and flexibility to cut emissions in its own region, it creates an unfair disadvantage for its trade partners (some of who are still in the developing stage and cannot afford such measures). Moreover, given the technical and political complexities of the carbon tax (with regards to WTO and other trade treaties), it is unlikely that it will be implemented before 2024, which is when the current President Ursula von der Leyen’s term gets over. This will further make its implementation dicey.

However, all being said, the EU Green Deal is a policy in the right direction. With the blueprints being laid down, now it all depends on the implementation. While few measures may be difficult to achieve, there is a lot of unanimous backing for green finance. An increasing number of investors is moving away from ‘brown’ assets towards climate-friendly investments. Irrespective of the outcome or success of the Green Deal, green investments are definitely the future. Thus companies, both within the EU as well as globally, must look at innovating their processes as well as products/services to align them with climate goals to lure both public and private funding in the long run.

by EOS Intelligence EOS Intelligence No Comments

Commentary: India’s Automobile Sector Breakdown Causing Economic Distress

422views

Over the past few months, a lot has been said about the shrinking automobile sales in the Indian market. Touted as one of the key drivers of India’s economic growth, the automobile industry is facing the worst slowdown in two decades as production and sales numbers continue to drop month after month sending the sector in a slump. While the government has made efforts to improve the situation, it will take more than just policies and measures to flip the status quo and bring the industry back on the growth path.

Indian automotive industry witnessed a period of growth during the first term of Modi government – we wrote about it in our article Commentary: Indian Automotive Sector – Reeling under the Budget in February 2018. However, over the past year, the auto sector is in shambles and far from recovery. The sector that contributes 49% of the manufacturing GDP in the country (and more than 7% to the country’s total GDP) has shown decline in growth in the past 18 months as the numbers continue to fall each month. The slowdown is so severe that it has affected all aspects of the business leading to piled up inventory, stalled production lines, decelerating dealership sales, delayed business investments, and job loss.

Quintessential factors that triggered the slowdown

There are various reasons that have plagued the auto industry in the recent months. One of the key factors is the inability of NBFCs (Non-Bank Financial Companies) to lend money. NBFCs, which largely depend on public funds (mainly in the form of bank borrowings, debentures, and commercial paper), have been facing liquidity crunch in the recent past as both public sector and private sector banks have discontinued lending money. This had a double effect on the auto sales – firstly low liquidity has restricted NBFCs ability to finance vehicles, thus having an adverse impact on sales, and secondly, the limited availability of funds bulleted the cost of financing vehicles thereby making them relatively more expensive, further worsening the sales scenario.

In October 2018, the Supreme Court of India announced that no BS-IV cars shall be sold in India with effect from April 1, 2020 (all automobiles should be equipped with BS-VI compliant engines, with an aim to help in reducing pollution in terms of fumes and particulate matter). Owing to this, consumers have delayed their plans to purchase vehicles expecting automobile companies to offer huge discounts in the early months of 2020. And to clear out their existing stock of BS-IV vehicles, it is highly likely that the companies will offer massive concessions before the deadline hits. Delay in purchase of vehicles on consumers’ end has contributed to the overall low sales.

Additional factors that add to the downfall include changes in auto insurance policy (implemented in September 2018) under which buyers have to purchase a three-year and five-year insurance cover for car and two-wheeler, respectively (as against annual renewals), inclusion of additional safety features (including airbags, seat-belt reminders, and audio alarm systems) in all vehicles manufactured after July 1, 2019 adding to the manufacturing cost for the OEMs, and stiff competition from growing organized pre-owned vehicle market which has doubled in size in less than a decade (the share of the organized channel of the pre-owned car market has increased to 18% in 2019 from 10% in 2010). Customers have been passive on buying new vehicles as the total cost of ownership goes up due to an increase in fuel prices, higher interest rates, competition from used cars segment, and a hike in vehicle insurance costs.

Government initiatives to help the auto sector recover

To boost demand for automobiles and offer some respite to the businesses operating in the space, the government announced a number of measures and policies. These include lifting the ban on purchase of vehicles by government departments (the ban was introduced in October 2014), which is hoped to result in loosening of stocked-up inventory and getting sales for automakers, component manufacturers, and dealers. Government also announced additional 15% depreciation on new vehicles for commercial fleet service providers acquired till March 2020 with the aim to clear the high inventory build-up at dealerships.

Other than lifting the ban and price reductions, the government also announced that all BS-IV engine-equipped vehicles purchased until March 2020 will remain operational for the entire period of registration. This will have a two-fold effect – firstly, automakers will be able to push out their stock without having to upgrade existing models and make them BS-VI-complaint (since no more BS-IV-complaint vehicles will be registered post March 2020 and manufacturers will have to upgrade to BS-VI from BS-IV emission standard on the old stocks) thus clearing old inventory, and secondly, consumers can expect much higher discounts. This is expected to provide enough movement within the auto sector, both in terms of sales and revenue generation.

Government has also taken steps to stabilize the NBFC crisis where a separate budget of US$ 14 billion (INR 100,000 crore) has been announced to refinance selected NBFCs. While it is clear that these limited funds will not last long, currently, any step taken to recover from the situation is welcomed.

Though considered temporary, the relief measures offered by the government have gained traction in the industry and players believe that these provisions will have a positive impact on the buyers’ sentiment, even if for a short period of time.

Implications of the auto industry crisis

The slowdown is expected to have a negative impact across all aspects of auto business, especially in the short term. Drop in sales has led manufacturers to decrease production (and even stop production for a certain period of time), cut down overall costs, and reduce headcounts thus weighing down the overall automotive sector.

The months leading to reduced sales did not only impact the production capacities but also resulted in the loss of more than 350,000 jobs. In the coming months, many more risk losing their jobs owing to plant shutdowns, dealership closures, and small component manufacturers going bankrupt.

The cost of vehicle ownership has also increased. Automobiles attracts the highest GST slab of 28%, and this, coupled with the varying road and registration charges imposed by state governments, makes the upfront cost of the vehicle exorbitant for a large segment of consumers (especially the working middle class for whom a two-wheeler or a small segment car is a basic necessity rather than a nice-to-have convenience) making it almost impossible for them to but it.

Given that the automobile sector works in conjunction with other industries, the current slump in auto sales will pull down ancillary industries including parts and components, engines, battery, brakes and suspension, and tire, among others. Considering the fact that the sector contributes nearly half to the country’s manufacturing GDP, if the issue at hand is not addressed immediately, it will further add to the ongoing economic crisis within the country worsening the situation altogether.

EOS Perspective

Policies announced by the Modi government to revive the tumbling automobile sector only seem to mitigate the negative sentiments circling about the future of the industry. However, at this stage, what the industry really needs is a stimulus package in the form of tax incentives or liquidity boost to immediately change things on the ground level.

There is an urgent need of a remedial course of action on the government’s part to stop the vehicle sales from dropping further. As an immediate relief to boost sales and invigorate the auto sector, the government should implement a GST cut on vehicles. This would kick-start vehicle demand almost instantaneously that would work in favor of the automobile industry – manufacturers (to resume halt production), dealers (to clear inventory), and parts makers (to resume small parts and component manufacturing), help resuscitate lost jobs, and contribute, to a small extent, to strengthen country’s slow economic growth.

However, with the government turning a blind eye to industry needs (lowering the GST slab), there is only so much the business owners can do. Under this current scenario, unless the government takes some drastic measures that ensure validation in backing automakers, auto ancillary businesses, and dealers, the sector is unlikely to recover soon. Provisional policies and short-term measures can offer momentary relief but not the survival kick the auto industry is in dire need of.

by EOS Intelligence EOS Intelligence No Comments

Biofuels: From Crest to Trough?

325views

For the past decade biofuels have been contemplated as a sustainable source of energy that could alleviate global warming problems. The biofuel industry has experienced rapid growth driven by strong government support resulting in policy mandates and subsidies. However, the bucolic scenario of biofuels may soon be overshadowed considering the ecological toll on farm land and food crops from its production. The question still remains if we are ready to imperil food crops to grow energy crops.

The biofuel buzz sparked in the 2000s when several governments across the world offered subsidized ethanol and biodiesel to make it cost competitive with gasoline and diesel, and investors acquired lands to produce feedstock, particularly in emerging economies.

Biofuels are promoted as alternatives to fossil fuels, however, it seems that this green energy facade is impinging on our food and environment needs. Turning plants into fuel or electricity comes across as an inefficient strategy to meet the global energy demand. Irresponsible farming practices — to grow corn to suffice biofuel needs — in countries such as the USA are likely to result in adverse temperature and precipitation conditions due to climatic changes that will shrink corn and wheat yields in coming 10-20 years.

Biofuel development certainly creates employment opportunities in economies, improves vehicle performance, and reduces dependence on crude oil imports. However, this comes at the expense of higher food prices as biofuels compete with food production by using crops and lands. Moreover, biofuel production does not generally result in reduced greenhouse gases, as emissions still occur causing pollution.

Further, biofuels are less cost effective than fossil fuels. For example, biomass costs about 20% more than coal. Also, biofuels have lower energy content as compared with fossil fuels, which allows vehicles running on biofuels to travel shorter distances than on the same amount of fossil fuel. The energy content of biodiesel is approximately 90% of petroleum, while ethanol is 50% that of gasoline. Consequently, travelers would require higher amount of fuel, if running on biofuels, which will increase their expenditures. With the government laws supporting blending of ethanol in petroleum, motorists in the UK (for example) are likely to pay about £460 million annually due to higher fuel cost at pumps and lower energy content of biofuels.

While the disadvantages of biofuels has been widely known, in the past couple of years, bioethanol and biodiesel production has grown rapidly in several countries, supported by various policies and government subsidies. Currently, some of the leading biofuel producing countries include the USA, Brazil, and Argentina. It is interesting to look at the socio-economic and ecological impact of biofuel production on these countries.

Impact of Biofuels on Top Producing Countries
Biofuels


A Final Word

To choose biofuels over fossil fuels is like entering into a race between food versus fuel. Countries such as the USA use 40% of corn harvest for fuels — devoting farmlands to energy needs instead of feeding people. With crude oil extinction almost 10 million years away, it is quite inappropriate to contaminate environment to yield economic benefits from biofuels. Biofuels have not lived up to the expectation and have ceased to provide lower carbon footprint, as they cause indirect emissions by ruining the farming land and vegetation. At a time, when demand for land is likely to grow 70% by 2050 to meet global food demands, it is highly wasteful to use the same land to suffice energy needs.

In April 2015, Renewable Energy Directive of the EU announced a cap of 7% on the contribution of food crops in biofuel production. Such initiatives will help to sustain a balance in food supply chain. In order to establish appropriate carbon footprint accounting, the European Commission has approved indirect emissions to be considered as part of a holistic picture of biofuel harmful effects. Moreover, the European Commission is likely to prohibit the use of first generation biofuel post 2020.

So, what’s the alternative to biofuels, or at least another source of energy that is more sustainable?

A sustainable solution to the problem could be clean renewable fuels like cellulosic ethanol, which is manufactured from inedible parts of plants. Greenhouse gas emissions from cellulosic ethanol are 86% lower than from petroleum sources. Companies such as DuPont are investing to build bio-refineries to manufacture cellulosic ethanol. The refinery is located in Nevada, USA and will produce 30 million gallons of cellulosic ethanol annually after commencing operations in 2016. Other avenues such as energy efficient batteries, fuel cells, and solar and wind energy for powering vehicles and factories should also be pursued. Companies such as Tesla, a US-based automotive and energy storage company, have made groundbreaking progress in manufacturing low-cost solar powered batteries that discharge to generate electricity for homes, businesses, and utilities. Solar and wind energy investments are at an all-time high, both across advanced and emerging markets.

Perhaps, the need of the hour is for governments to look at diverse sources of renewable energy as a whole, and invest in a way that is most effective and sustainable for the economies and the environment. Clearly, biofuels (as was perhaps once expected) is not the ideal solution to global energy needs.

by EOS Intelligence EOS Intelligence No Comments

Will Shale Gas Solve Our Fuel Needs for the Future?

362views

At first glance, shale gas might look too good to be true: large untapped natural gas resources present on virtually every continent. Abundant supplies of relatively clean energy allowing for lower overall energy prices and reduced dependence on non-renewable resources such as coal and crude oil. However, despite this huge potential, the shale gas revolution has remained largely limited to the USA till now. Concerns over the extraction technology and its potentially negative impact on the environment have hampered shale gas development in Europe and Asia on a commercial scale. However, increasing energy import bills, need for energy security, potential profits and political uncertainty in the Middle East are causing many countries to rethink their stand on shale gas extraction development.

How Large Are Shale Gas Reserves And Where Are They Being Developed?

An estimation of shale gas potential conducted by the US Energy Information Administration (EIA) in 2009 pegs the total technically recoverable shale gas reserves in 32 countries (for which data has been established) to 6,622 Trillion Cubic Feet (Tcf). This increases the world’s total recoverable gas reserves, both conventional and unconventional, by 40% to 22,622 Tcf.


Technically Recoverable Shale Gas Reserves

Continent
Shale Gas Reserves and Development
North America Technically Recoverable Reserves: 1,931 Tcf
Till now, almost whole commercial shale gas development has taken place in the USA. In 2010, shale gas accounted for 20% of the total US natural gas supply, up from 1% in 2000. In Canada, several large scale shale projects are in various stages of assessment and development. Despite potential reserves, little or no shale gas exploration activity has been reported Mexico primarily due to regulatory delays and lack of government support.
South America Technically Recoverable Reserves: 1,225 Tcf
Several gas shale basins are located in South America, with Argentina having the largest resource base, followed by Brazil. Chile, Paraguay and Bolivia have sizeable shale gas reserves and natural gas production infrastructure, making these countries potential areas of development. Despite promising reserves, shale gas exploration and development in the region is almost negligible due to lack of government support, nationalization threats and absence of incentives for large scale exploration.
Europe Technically Recoverable Reserves: 639 Tcf
Europe has many shale gas basins with development potential in countries including France, Poland, the UK, Denmark, Norway, the Netherlands and Sweden. However, concerns over the environmental impact of fracturing and oil producers lobbying against shale gas extraction are holding back development in the region with some countries such as France going as far as banning drilling till further research on the matter. Some European governments, including Germany, are planning to bring stringent regulations to discourage shale gas development. Despite this, countries such as Poland show promising levels of shale gas leasing and exploration activity. Several companies are exploring shale gas prospects in the Netherlands and the UK.
Asia Technically Recoverable Reserves: 1,389 Tcf
China is expected to have the largest potential of shale gas (1,275 Tcf). State run energy companies like Sinopec are currently evaluating the country’s shale gas reserves and developing technological expertise through international tie-ups. However, no commercial development of shale gas has yet happened. Though both India and Pakistan have potential reserves, lack of government support, unclear natural gas policy and political uncertainty in the region are holding back the extraction development. Both Central Asia and Middle East are also expected to have significant recoverable shale gas reserves.
Africa Technically Recoverable Reserves: 1,042 Tcf
South Africa is the only country in African continent actively pursuing shale gas exploration and production. Other countries have not actively explored or shown interest in their shale gas reserves due to the presence of large untapped conventional resources of energy (crude oil, coal). Most potential shale gas fields are located in North and West African countries including Libya, Algeria and Tunisia.
Australia Technically Recoverable Reserves: 396 Tcf
Despite Australia’s experience with unconventional gas resource development (coal bed methane), shale gas development has not kicked off in a big way in Australia. However, recent finds of shale gas and oil coupled with large recoverable reserves has buoyed investor interest in the Australian shale gas.

What Are The Potential Negative Impacts Of Shale Gas Production?

Despite the large scale exploration and production of shale gas in the USA, countries around the world, especially in Europe, remain sceptical about it. Concerns over the environmental impact of hydraulic fracturing, lack of regulations and concerns raised by environmental groups have slowed shale gas development. Though there is no direct government or agency report on pitfalls of hydraulic fracturing, independent research and studies drawn from the US shale gas experience have brought forward the following concerns:


Shale Gas Challenges

Will Shale Gas Solve Our Future Energy Needs?

Rarely does an energy resource polarize world opinion like this. Shale gas has divided the world into supporters and detractors. However, despite its potential negative environmental impact, shale gas extraction is associated with a range of unquestionably positive aspects, which will continue to support shale gas development:

  • Shale gas production will continue to increase in the USA and is expected to increase to 46% of the country’s total natural gas supply by 2035. USA is expected to transform from a net importer to a net exporter of natural gas by 2020.

  • Despite initial opposition, countries in Europe are opening up to shale gas exploration. With the EU being keen to reduce its dependence on imported Russian piped gas and nuclear energy, shale gas remains one of its only bankable long-term options. Replicating the US model, countries like Poland, the Netherlands and the UK are expected to commence shale production over the next two-five years and other countries are likely to follow suit.

  • Australian government’s keenness to reduce energy imports in addition to the recent shale gas finds has spurred shale gas development the country. Many companies are lining up to lease land and start shale gas exploration.

  • More stringent regulations from environment agencies are expected to limit the potential negative environmental impact of shale gas exploration.

  • Smaller energy companies that pioneered the shale gas revolution in the USA are witnessing billions of dollars worth of investments from multinational oil giants such as Exxon Mobil, Shell, BHP Billiton etc. are keen on developing an expertise in the shale gas extraction technology. These companies plan to leverage this technology across the world to explore and produce shale gas.The table below highlights major acquisitions and joint venture agreements between large multinational energy giants and US-based shale gas specialists over the last three years.

Major Deals in Shale Gas Exploration

Company

Acquisition/Partnership

Year

Investment
Sinopec Devon Energy January 2012 USD 2.2 billion
Total Chesapeake Energy January 2012 USD 2.3 billion
Statoil Brigham Exploration October 2011 USD 4.4 billion
BHP Billiton Petrohawk July 2011 USD 12.1 billion
BHP Billiton Chesapeake Energy February 2011 USD 4.75 billion
Shell East Resources May 2010 USD 4.7 billion
Exxon Mobil XTO Energy December 2009 USD 41.0 billion
Source: EOS Intelligence Research


Shale gas production is expected to spike in the coming three-five years. Extensive recoverable reserves, new discoveries, large scale exploration and development and technological improvement in the extraction process could lead to an abundant supply of cheap and relatively clean natural gas and reduce dependence on other conventional sources such as crude oil and coal For several countries including China, Poland, Libya, Mexico, Brazil, Algeria and Argentina, where the reserves are particularly large, shale gas might bring energy stability.

The need for energy security and desire to reduce dependence on energy imports from the Middle East and Russia (and hence to increase political independence), are likely to outweigh potential environmental shortfalls of shale gas production, and some compromise with environment protection activist groups will have to be worked out. Though the road to achieving an ‘energy el dorado’ appears to be long and rocky, it seems that with the right governments’ support, shale gas could become fuel that could significantly contribute to solving the world energy crisis over long term.

Top