• SERVICES
  • INDUSTRIES
  • PERSPECTIVES
  • ABOUT
  • ENGAGE

HEALTHCARE

by EOS Intelligence EOS Intelligence No Comments

Indian Pharma Needs to Reinforce Supply Chain Capabilities

1.1kviews

COVID-19 has emphasized the importance of a strong healthcare and pharmaceutical ecosystem for India. The constant demand for drugs and the expectation to deliver them in time put a lot of pressure on pharma supply chains, highlighting several challenges and shortcomings. At the same time, the Indian pharma sector seems to have benefited from the situation as well, as the pandemic unlocked new avenues of growth. To seize new opportunities, the Indian pharma sector should now focus on increasing manufacturing capacity, investing in R&D capabilities, developing world-class infrastructure, and strengthening its supply chain network.

Challenging times for the Indian pharma sector

With the coronavirus wreaking havoc, the Indian pharmaceutical sector was shaken, and the pandemic inflicted several challenges on the industry.

The key challenge faced by pharmaceutical companies has been the shortage of key raw materials for manufacturing drugs. India imports 60% of APIs (Active Pharmaceutical Ingredients) and DIs (Drug Intermediates), and nearly 70% of this demand is met by Chinese companies (as of July 2020). This reliance on importing cheaper raw materials from countries such as China is a result of a lack of tax incentives, the high cost of utilities, and low import duties in India.

India’s dependence on China has affected the supply of essential APIs. The recent pandemic has magnified this problem, and in order to meet the increasing demand, Indian pharma manufacturers need to strengthen their supply chain strategies by working with multiple API suppliers, both domestic as well as international.

Another concern has been the increased raw materials and logistics costs. Between January and June 2020, the production costs at the Chinese suppliers increased due to the implementation of safety and hygiene measures thus increasing the overall cost of APIs and other materials imported by India by an average of 25%. Logistics prices also went up during the same period, with the cost of shipping a container from China to India increasing to an average of US$ 1,250, up from US$ 750. Additionally, air freight charges also went up from US$ 2/kg to US$ 5-6/kg.

Furthermore, restrictions on movement of products and other goods also posed a problem for pharma supply chain. Even though the sector was exempted from these restrictions, delays in the delivery of drugs were registered. These delays have been largely contributed to by the complexity of various processes and their elements (from raw material procurement to procuring casing and other packaging material – all of which come from different locations to the final assembly point, and their delivery can be exposed to delays at each stage). While logistics companies tried to make product deliveries on time, they were restrained by limited workforce and movement restrictions (that required clearance at every step).

Moreover, due to panic buying, scarcity of OTC and generic drugs was also observed.

Government’s push to make India self-reliant

The government has undertaken steps to strengthen the pharma sector and announced several schemes and policies to boost domestic pharma manufacturing.

To reduce import dependence on APIs and boost domestic manufacturing, the government approved a US$ 971.6 million (INR 69.4 billion) Production Linked Incentive (PLI) Scheme in March 2020 to promote domestic manufacturing of APIs and KSMs (Key Starting Materials)/DIs. Under the scheme, financial incentives ranging from 5% to 20% of incremental sales will be given to selected manufacturers of 41 critical bulk drugs (of the identified 53 APIs for which the country is heavily dependent on imports). This includes aid for fermentation-based products from FY2023–2024 to FY2028–2029 and for chemical-synthesis-based products from FY2022–2023 to FY2027–2028. It is expected that the scheme will result in incremental sales of US$ 649.6 million (INR 464 billion) and generate a large number of employment opportunities.

Moreover, in November 2020, a new PLI Scheme (referred to as PLI 2.0) for the promotion of domestic manufacturing of pharmaceutical products was announced, wherein US$ 210 million (INR 150 billion) were allotted for pharma goods manufacturers based on their Global Manufacturing Revenue (GMR). Financial incentives ranging from 3% to 10% of incremental sales will be given to manufacturers (classified under Group A – having GMR of pharmaceutical goods of at least US$ 700 million (INR 50 billion), Group B – having GMR between US$ 70 million (INR 5 billion) and US$ 700 million (INR 50 billion), and Group C – having GMR less than US$ 70 million (INR 5 billion). The objective of the scheme is to promote production of high-value products, increase the value addition in exports, and improve the availability of a wider range of affordable medicines for local consumers. The initiative is likely to create 100,000 (20,000 direct and 80,000 indirect) jobs while generating total incremental sales of US$ 41,160 million (INR 2,940 billion) and total incremental exports of US$ 27,440 million (INR 1,960 billion) during six years from FY2022-2023 to FY2027-2028.

Another scheme, named Promotion of Bulk Drug Parks, was announced by the government in March 2020 to attain self-reliance. Under the plan, funds worth US$ 420 million (INR 30 billion) were allotted for setting up three bulk drug parks between 2020 and 2025. This initiative aims at reducing the manufacturing cost as well as the dependency on importing bulk drugs from other countries. Financial assistance will be given to selected bulk drug parks to the extent of 70% of the project cost of common infrastructure facilities (for north-eastern regions and states in the mountainous areas, the assistance will be 90%). The aid per bulk Drug Park will be limited to US$ 140 million (INR 10 billion).

Furthermore, to end reliance on China, Indian pharma companies are also taking steps to strengthen their operations and manufacturing capabilities with regard to pharmaceutical ingredients. For instance, Cipla Ltd. (Mumbai-based pharmaceutical company) launched the “API re-imagination” program in 2020 to expand its manufacturing capacity by using government incentive schemes.

The announcement of the above schemes is a show of intent by the government towards building a self-sufficient pharma sector in India. It will be interesting to see how much pharma players stand to gain from these potentially game-changing initiatives. However, only time will tell if these policies are good enough for the industry stakeholders or will these schemes not be plentiful enough to truly help the manufacturers.

Indian Pharma Needs to Reinforce Supply Chain Capabilities by EOS Intelligence

Investment in API and intermediaries’ sub-sectors on the rise

Since the outbreak of COVID-19, Indian pharmaceutical companies (that deal particularly with the manufacturing of APIs, vaccine-related products, and bulk pharma chemicals) have been attracting huge investment from private equity firms. This is happening mainly because of two reasons. Firstly, the occurrence of the second wave of COVID-19 in India has increased the demand for medicines (including demand for self-care, nutritional, and preventive pharma products to boost immunity), and secondly, pharma companies across North America and Europe are shifting their manufacturing sites from China to India (to reduce dependency on a single source). Indian companies received an investment worth US$ 1.5 billion from private equity firms during FY2020-2021 (since the coronavirus outbreak), and the investment is expected to reach US$ 3-4 billion in FY2021-2022.

Some of the major deals that happened in this space included Carlyle Group (US-based private equity firm) buying a 20% stake in Piramal Pharma (Mumbai-based pharma company) for US$ 490 million in June 2020 and a 74% stake in SeQuent Scientific (India-based pharmaceutical company) for US$ 210 million in May 2020. Further, KKR & Co. (US-based global investment company) purchased a 54% controlling stake in J.B. Chemicals & Pharmaceuticals Ltd. (Mumbai-based pharmaceutical company) for nearly US$ 410 million in July 2020. Another example is Advent International (US-based private equity firm) acquiring stakes in RA Chem Pharma (Hyderabad-based pharmaceutical company) for US$ 128 million in July 2020.

From a capital perspective, COVID-19 acted as an investment accelerant that will keep the market open for opportunistic deals for many years to come. In the current scenario, investment firms are re-evaluating the pharma landscape and looking to invest in innovative ideas and products that help them grow. It is highly likely that in the coming months if the right opportunity strikes, the investment firms will not be deterred from going ahead with novel deal structures. This could include arrangements such as both parties sharing equal risk and rewards, a for-profit partnership wherein the investor specifically focuses on enhancing the digital-marketing capabilities of the pharma company (rather than sticking to just acquiring a certain share or merging with an existing company) and being open to taking more risk if needed.

Partnerships expected to increase

The pandemic has led pharma companies to rethink their operational and business strategies. For long-term sustainability, players analyze their market position, partnering with other industry stakeholders for better market penetration and value creation for their customers.

In November 2020, Indian Immunologicals Ltd. (Hyderabad-based vaccine company) announced that the company would invest US$ 10.5 million (INR 0.75 billion) in a new viral antigen manufacturing plant based in Telangana that would cater to the need for vaccines for diseases such as dengue, zika, varicella, and COVID-19 (in April 2021, the company announced a research collaboration agreement with the Griffith University, Australia to develop a vaccine for the coronavirus).

Furthermore, Jubilant Life Sciences Ltd. (Noida-based pharma company) entered into a non-exclusive licensing agreement with Gilead Sciences (a US-based biopharmaceutical company), granting it the right to register, manufacture, and sell Remdesivir (Gilead Sciences’ drug currently used as a potential therapy for COVID-19) in India (along with other 126 countries).

In February 2021, to scale up the biopharma ecosystem, the state government of Telangana partnered with Cytiva (earlier GE Healthcare Life Sciences) to open a new Fast Trak lab in Hyderabad. This facility will enable the biopharma companies in the region to improve and increase production efficiency, reduce operational costs, and make products available in the market quicker.

Future ripe for new opportunities

The pandemic has opened a stream of opportunities for India’s pharma sector which are expected to drive the growth of the sector in the long term.

China’s supply disruption and increased raw material costs have forced global pharma companies to reduce dependence on China. As an alternative, the companies either set up new API manufacturing plants (which is time-consuming) or turn to existing European or US drug manufacturers to help them meet their requirements. However, both options are capitally draining, and there is a need to find a cost-efficient solution. This presents a huge opportunity for the Indian API sector, which is also a key earnings growth driver for pharma manufacturers.

India is among the leading global producers of cost-effective generic medicines. Now, there is a need to diversify the product offerings by focusing on complex generics and biosimilars. With the guidance of the United States Food & Drug Administration (USFDA) in identifying the most appropriate methodology for developing complex generic drugs, Indian pharma companies such as Dr. Reddy’s, Zydus, Glenmark, Aurobindo, Torrent, Lupin, Cipla, Sun, and Cadila are working on their product pipeline of complex generics. Currently, the space has limited competition and offers higher margins (in comparison to generic drugs), thus presenting a lucrative opportunity for Indian players to explore and grow.

Similarly, biosimilars (referred to as similar biologics in India) are another area where Indian companies have not been faring too well in international markets, mainly due to the non-alignment of Indian regulatory guidelines with the guidelines in other markets (mainly in Europe and the USA). The government had already revised the guidelines of similar biologics (done in 2016, which provided an efficient regulatory pathway for manufacturing processes assuring safety and efficacy with quality as per cGMP (Current Good Manufacturing Practice regulations enforced by the FDA)) and introduced industry-institute initiatives (such as ‘National Bio-Pharma Mission’, launched in 2017 to accelerate biopharmaceutical development, including biosimilars, among others) to improve the situation. But now, with the intensified need for improved healthcare systems and more effective medicines, COVID-19 has presented Indian companies with an opportunity to shape their biosimilar landscape.

India holds a strong position as a key destination for outsourcing research activities. While it has been a preferred location for global pharma companies to set up R&D plants for a number of years now, becoming an outsourcing hub for pharma research is another growth area that is yet to be explored to its full potential.

EOS Perspective

Currently, the Indian pharma industry is at an interesting crossroads wherein the industry responded to the unprecedented situation with agility and persistence. The pandemic presented several opportunities and challenges for the industry and unsurprisingly, had a positive impact on the sector. The pandemic acted as a catalyst for change and investment for the pharma sector, which also responded to the challenges by adjusting to the new normal that furthered new opportunities.

In the past few months, COVID-19 has led the government to reassess the country’s pharmaceutical manufacturing capabilities and led them to take steps to make India self-sufficient. As an immediate measure, the country has been reviewing its business policies (for the ease of doing business and to attract more investment) and pharma companies recalibrating their business models, and some success has been achieved. The government should also be mindful that, in the long run, success will only be achieved when industry stakeholders are presented with a business environment (in the form of incentives, tax subsidies, low rates of interest on bank loans, utilities such as electricity and water at discounted rates, and transparent business policies, etc.) that is conducive for growth.

Moving forward, the Indian pharma companies need to be adaptive and flexible. While the sector has been resilient to the effects of the coronavirus pandemic, companies need to focus on risk management as well. Moreover, with continuous capital flowing into the sector, there is an opportunity for firms to not just broaden their scope of innovation but also to invest in critical therapeutic areas.

To emerge as a winner post-pandemic, the Indian pharma industry needs to focus on its strengths and propel full steam in the direction of opportunities presented by COVID-19.

*All currency conversions as on 20th May, 2021, 1 INR = 0.014 US$

by EOS Intelligence EOS Intelligence No Comments

COVID-19 Outbreak Boosts the Use of Telehealth Services

Telehealth is one of the few sectors that have benefited from the coronavirus outbreak. Telehealth services have been around since 1950s, however, they were perceived as a nice-to-have alternative to conventional delivery of healthcare services and thus largely underutilized. COVID-19 pandemic has proved to be a game changer for the industry. Since social distancing became a necessary measure to curb the risk of COVID-19 transmission, telehealth emerged as a viable option to offer uninterrupted healthcare without physical contact. Towards the end of 2020, Deloitte predicted that virtual consultations would account for 5% of total visits to doctor in the world in 2021, up from 1% in 2019. To put this into perspective, in 2019, doctor’s visits in OECD-36 countries totaled 8.5 billion, worth approximately US$500 billion. 5% of this would result in about 400 million teleconsultations and over US$25 billion in value (if doctors earn the same for teleconsultations as for in-person visits).

Telehealth services uptake during the pandemic varied by region

While the adoption of telehealth services has increased across the globe, the growth rate varied by region depending upon factors such as technology and infrastructure, consumer awareness and willingness, government regulations, insurance policies, etc.

In the USA, world’s largest telehealth market which accounted for 40% of the global share in 2019, the growth over the years was steady but incremental mainly because of regulatory constraints and stringent insurance policies.

In response to the pandemic, the US government health insurance plans (Medicare, Medicaid, etc.) as well as private insurers expanded their coverage for telehealth services. As a result, telehealth accounted for 43.5% of all US Medicare primary care visits in April 2020, compared with just 0.1% before the pandemic. US Centers for Disease Control and Prevention indicated that the number of telehealth visits increased by 154% during the last week of March 2020, compared with the same period in 2019, primarily due to policy changes and public health guidance on telehealth during the pandemic. Considering unprecedented rise in demand for telehealth services during the times of pandemic, in April 2020, Forrester (a research and consulting firm) revised their estimation for virtual general medical care visits in the USA from 36 million to 200 million for the year 2020.

UK and France have been the dominating countries in the European telehealth market. Telehealth services’ growth momentum due to COVID-19 pandemic in these countries is likely to continue because of conducive environmental factors such as established ecosystem, favorable regulatory framework, reimbursement policies, and consumer readiness. UK’s National Health Service revealed that 48% of GP consultations in May 2020 were carried out remotely over the telephone, compared with 14% in February of the same year. Teleconsultations in France increased from 40,000 in February 2020 to 611,000 in March 2020.

Growth of telehealth market in Switzerland, Germany, and Austria has been comparatively slow as these countries have more decentralized healthcare systems in contrast to UK or France. For instance, McKinsey’s survey of over 1,000 consumers from Germany, conducted in November 2020, showed that only 2% respondents started or increased usage of telehealth services since COVID-19 outbreak.

In countries such as Greece and Czech Republic, telehealth platforms were launched for the first time during the pandemic. Ireland had telehealth platforms before COVID-19, but the adoption of the telehealth services even after pandemic remains moderate because of lack of favorable regulatory framework.

COVID-19 Outbreak Boosts the Use of Telehealth Services

China and India are among the fastest growing telehealth markets in Asia. The number of telehealth providers in China increased from less than 150 to nearly 600 between late 2019 and early 2020. Telehealth platforms in India are witnessing increased interest from both patients as well as doctors. India’s leading health-tech firm, Practo, reported that 50 million people opted for teleconsultations through its platform between March 2020 and May 2020, representing 500% growth in teleconsultations during this time. 1mg Technologies, another telehealth service provider in India, indicated that between March 2020 and July 2020 nearly 10,000 doctors showed interest in signing up with the platform to offer teleconsultations. The company had only 150 doctors onboard until March 2020.

Japan, which is one of the largest healthcare markets, lagged in remote healthcare services because of stringent legislative policies. Remote consultations were allowed only for recurring patients and for limited number of ailments. Following the spike in COVID-19 cases, Japan temporarily eased restrictions on telehealth by allowing doctors to conduct first-time consultation online. Japan health ministry indicated that about 15% or 16,100 Japanese medical institutions (excluding dentists), offered telehealth services by July 2020. This shows phenomenal growth as in July 2018 only 970 of such Japanese healthcare institutions offered telehealth services.

In South Korea, telehealth was banned before COVID-19. This ban was lifted temporarily during the pandemic, but the long-term growth of telehealth in South Korea will depend on how the regulatory framework is shaped in the post-COVID era.

Vietnam also joined the telehealth upsurge as the country’s first telehealth app (developed by the Vietnamese multinational telecommunications company, Viettel) was launched amidst corona virus outbreak in April 2020.

Industry stakeholders seek to capitalize on telehealth boom

Healthcare providers have turned to telehealth to compensate for cancelled in-person consultations due to COVID-19 outbreak. This has encouraged providers to scale up their telehealth capabilities. For instance, over 56,000 doctors in France started teleconsultations by July 2020, as compared with only a few thousands at the beginning of the year.

Healthcare providers are not the only players looking to capitalize on the increase in demand for telehealth services. Other industry participants such as insurers and pharmacies are also exploring this segment.

In the USA, leading insurers such as Cigna, United Health, Aetna, Anthem, and Humana are partnering with telehealth providers to capitalize on the spurt in virtual healthcare demand. For instance, in February 2021, Cigna announced plans to acquire MDLive, Florida-based telehealth firm serving 60 million people across the USA, with a view to bring telehealth services in-house and reduce the patient-provider accessibility gap. Pharmacy giants Walgreens and CVS also extended access to telehealth services during COVID-19 crisis. In March 2021, a US-based digital retail pharmacy NowRx expanded into telehealth to provide care for HIV patients in California.

Since telehealth primarily encompasses delivery of healthcare services through digital and telecommunications platforms, telecoms and cable operators are uniquely positioned to organically expand in to telehealth space. Telecoms have the opportunity to expand in healthcare space by delivering telehealth as a value-added service. In October 2020, CommScope, an infrastructure solutions provider for communications networks, estimated that telehealth has the potential to create US$50 billion per year revenue opportunity for internet and telecom service providers in the USA.

Moreover, leading technology firms including Amazon, Microsoft, Salesforce, Tencent, Alibaba, and Alphabet are also investing in or considering to invest in telehealth. For instance, in January 2020, Alibaba launched an online coronavirus clinic, to offer remote assistance to patients across China.

Telehealth startups are mushrooming across the world and raking in millions in investment. Mercom Capital Group indicated that, in 2020, telehealth attracted nearly US$4.3 billion in venture funding. This represents 139% year-on-year increase compared to US$1.8 billion in 2019 implying that COVID-19 outbreak was the key driver behind the increased investment in telehealth.

Since everyone is trying to grab a piece of the growing telehealth market cake, this has led to flurry of M&A deals. Mercom Capital Group recorded 23 M&A transactions in telehealth space in 2020, up from 14 transactions in 2019.

EOS Perspective

COVID-19 outbreak worked as a catalyst resulting in dramatic increase in telehealth services utilization; whether this growth will continue in the long term, remains a question. This growth of telehealth market is primarily demand-driven. Thus, to sustain the growth momentum it would be imperative to overcome the challenges faced by the industry before the pandemic.

Ambiguous and often changing regulatory framework remains one of the biggest hindrances to telehealth. In order to tackle the spread of coronavirus, many countries temporarily relaxed their regulations for telehealth. However, it remains unknown whether countries will pull back the relaxations once the pandemic is over. Moreover, telehealth opens up doors for cross-border provision of healthcare services. This calls for development for a universal law for telehealth which is acceptable worldwide.

Further, the market will also largely depend on how the reimbursement policies evolve in the future. Historically, in many countries, reimbursement for teleconsultations has been lower than for in-person consultations. During the pandemic, the reimbursement amount was leveled in order to encourage adoption of telehealth. This proved to be a strong incentive driving the surge in telehealth. Post the pandemic, if the policies are changed again offering lower reimbursement for teleconsultations as compared with in-person visits, this could impact the growth momentum.

Data security and privacy concerns have long been debated as some of the biggest barriers for telehealth worldwide. Development of more secure platforms using technologies such as blockchain, AI, and Secure Access Service Edge (SASE) networks could potentially address these issues in future. Further applications of blockchain are being explored to improve operational transparency, increase protection of health records, and detect fraud related to patients’ insurance claims as well as physician credentials.

It is believed that the risk of misdiagnosis increases with telehealth as compared to in-person visits. This risk can be significantly reduced by integration of remote patient monitoring technologies with teleconsultations. IoT-enabled remote care monitoring technologies have been evolving by leaps and bounds. Teleconsultations carried out in conjunction with data collated from smart wearable devices can potentially help to cut down misdiagnoses.

Telehealth has become the new normal amidst coronavirus outbreak. While the telehealth market growth in the next 2-3 years could be attributed to pandemic crisis, the future will depend on how the regulatory framework will shape up and whether the industry will be able to tackle the challenges related to the technology implementation.

by EOS Intelligence EOS Intelligence No Comments

Blockchain: a Frontline Warrior in Battling COVID-19 Pandemic

377views

SARS-COV-2 has brought the world to a standstill. Technology and its creative uses have been playing a pivotal role in sustaining lives during the pandemic as well as combating the crisis. One such technology that has been at the forefront of the pandemic is blockchain. From mitigating supply chain issues with medicines and protection gear to facilitating transparency in donations to effectively tracking the spread of the virus and protecting patient privacy, blockchain technology is being applied across the spectrum to contain and manage the outbreak.

The current pandemic has brought to light many inefficiencies and limitations of the existing global healthcare systems, wherein governments across the globe are grappling to control the outbreak, challenged by the lack of a unified, interconnected, and trusted network to share data and track cases. Blockchain has several inherent properties, such as decentralized ledger, transparency, and immutability, that make it suitable for handling and managing various aspects of containing the pandemic.

Outbreak tracking

Global health authorities and governments across the globe are having a hard time gathering authentic data regarding tests and patient numbers, hospital beds, recoveries, etc. Currently, most of the data circulating is disparate and comes from multiple sources, such as hospitals, labs, the public, and media, instead of one authorized source. This is extremely damaging since it results in the creation of a great amount of inaccurate and duplicate data, which, if trusted, makes the process of tracking and containment both time-consuming and ineffective. This is counter-productive to the management of a disease that is as fast-spreading as COVID-19.

Blockchain technology can come into play in effectively tackling this issue. Owing to its distributed and immutable nature, blockchain can provide a feasible solution for tracking the outbreak. Blockchain-based apps facilitate organizations across the globe to form a single connected network where data can be shared in real time and securely. Moreover, since data stored in the blockchain is immutable, it is protected against unauthorized changes, and its distributed nature ensures protection against fraudulent data (since each entry requires consensus algorithms and smart contracts). Lastly, blockchain efficiently manages high volumes of data (as in the cases of the COVID-19 pandemic) on a real-time basis, which cannot be managed using human resources.

However, in addition to these factors, the aspect that stands out the most and makes the blockchain technology ideal for monitoring and managing outbreak-related information is the level of privacy it offers. People do not wish for their information to be shared publicly or be used for other purposes. Thus, it is a challenge to get patients to collaborate with governments and healthcare institutions to share information regarding their condition and wellness. For instance, the Israeli government recently permitted healthcare institutions to track citizens’ mobile phones to control the spread of coronavirus. This has raised concerns from human rights organizations as citizens are not comfortable with sharing their personal information.

Since blockchain uses a distributed ledger, which ensures accountability and transparency with regard to access to its stored data, the information shared through blockchain cannot be extracted or misused. Moreover, information stored in a blockchain cannot be hacked. This encourages patients to share information regarding their condition, symptoms, location, and underlying health conditions without fear of the information being misused or shared with any third party.

Furthermore, information shared by patients in a blockchain network may not only be used for tracking the outbreak but also facilitate health centers’ study of the disease characteristics and patterns to develop treatment and solutions.

For instance, WHO has been using a blockchain-based data streaming platform, called MiPasa, which facilitates the sharing of information amongst need-to-know organizations such as state authorities and health officials. The platform is built on top of Hyperledger Fabric and partners with IBM for blockchain and cloud platforms. The application cross-references siloed location data with health information to track and prevent the spread of the outbreak, all while protecting patient privacy.

In another example, an Atlanta-based developer of blockchain-enabled healthcare applications, Acoer, developed an application called HashLog, which allows real-time logging and data visualization of the spread of the infection. HashLog provides real-time updates on the spread of the disease by tracking the movement of infected people to identify potential outbreaks and prevent further spread. The application uses the Hedera Hashgraph distributed ledger technology, and each entry is recorded through a verified hash reference on the ledger, ensuring that the data is correct.

Donations

In addition to tracking and preventing outbreaks, blockchain also plays an important role in securing donations. From hospitals and state authorities with insufficient funds for medical supplies to economically weaker sections of the population losing sources of income due to lockdown, the current pandemic has displaced a huge number of people across the globe. Thus, in such times, donations play a critical role in sustaining livelihoods and providing healthcare supplies to the affected people. However, given the fraud associated with donations in recent times, lack of trust is a common factor affecting the success of donations. Several individuals want to help and donate, however, are discouraged due to fear of their money being misused.

For instance in India, the government and police warned citizens against several fake relief schemes that have been floating in the name of COVID-19 relief, some even mirroring the Prime Ministers Relief Fund. These kinds of activities deter willing people from donating.

Blockchain technology can be used to effectively combat this issue. Since all transactions in the blockchain are secure, transparent, and traceable, donors can track their funds and see where they are utilized. This gives confidence to donors that their funds are being used for the exact purpose that they intended.

One such example is Hangzhou-based blockchain startup Hyperchain, which built a blockchain-based donation tracking platform for supporting government and hospitals (such as Tangshan People’s Hospital, Jiayu People’s Hospital, and Xiantao No. 1 People’s Hospital) in the donation process. The platform has attracted more than US$2 million in donations.

 

Blockchain a Frontline Warrior in Battling Coronavirus Pandemic by EOS Intelligence

Supply chain tracking

Blockchain technology has been deemed extremely useful in managing and tracing the supply chain in several sectors as retail (for more insights on this, read our article Blockchain Paving Its Way into Retail Industry). However, given the current pandemic, the technology can also utilize similar functionalities and play a significant role in tracking of medical supplies.

Given the pace of the spread of COVID-19, authorities and healthcare organizations across the globe have faced a shortage of medical supplies, such as masks, sanitizers, PPE kits, ventilators, testing equipment, as well as some medicines. This drastic increase in demand has resulted in the distribution of a large number of counterfeit and faulty products. Blockchain technology can play a significant role to combat this. Given the data provenance in blockchain and its immutable nature, it is possible to identify and trace back every touchpoint of the medical supplies to ensure its authenticity.

In addition to filtering counterfeit products, blockchain also helps streamline the supply chain process to ensure hospitals and doctors secure timely supplies to treat patients. Blockchain can provide real-time updates regarding demand so that medical manufacturers can adjust production levels accordingly. In addition, it can help fast-track supply chain contracts through the use of smart contracts and facilitate faster payments, thereby improving overall efficiency.

In February 2020, China-based AliPay, along with the Zhejiang Provincial Health Commission and the Economy and Information Technology Department, launched a blockchain-based platform to facilitate the tracking of medical supplies required for fighting SARS-COV-2. The platform has improved trust within the medical supply chain since it records and tracks the entire provenance of preventive supplies, including masks, gloves, and PPE kits.

Apart from the medical supply chain, blockchain can also help limit supply chain disruptions faced by several other industries due to lockdowns in several parts of the world. However, companies that are using blockchain for managing their supply chain have an advantage as they have better visibility into their complete supply chain and thereby can identify points of disruption in a timely manner.

Avoiding future pandemics

Blockchain is on the front line for fighting the current pandemic, but it also has the potential to prevent future disease outbreaks. Most of the current healthcare surveillance systems across the globe are outdated and lack the required timeliness and efficiency in sharing information with local as well as international health enforcement organizations. Moreover, sometimes there is a question of deliberate delay in the sharing of critical information.

To this effect, blockchain-based health surveillance systems can help mitigate future outbreaks. Since they operate on a decentralized ledger, the surveillance data is transparently available to health organizations across the globe in a real-time manner, without the fear of any political disruptions. Timely knowledge of a potential outbreak is the first and most critical step in preventing a similar situation in the future.

In addition to the above-mentioned applications, blockchain companies, along with institutions, are developing creative solutions that help reduce challenges faced by people due to COVID-19 in their day-to-day lives. For instance, Toronto-based blockchain company Emerge launched a public safety app called Civitas, which assists citizens and local authorities across Latin America. This app matches one’s official ID to confidential medical records stored in the blockchain to identify whether the person is allowed to leave the house or not. Thus, the app allows police to verify if the person has travel permission just on the basis of their government ID and without gaining access to the person’s medical records. The app also determines the safest time and day for going out for essentials for people who are experiencing COVID-like symptoms.

Moreover, as discussed in our previous article (Blockchain Scores Well in the Education Sector), blockchain is also extremely useful in the virtual education scenario, which is now the new way of schooling for a large part of students across the globe.

EOS Perspective

Blockchain technology has several inherent properties that make it ideal for helping to manage and combat the current pandemic. Its decentralized, traceable, and immutable properties make it especially desirable for managing contact tracing and outbreak tracking, which are critical in handling a pandemic efficiently. Moreover, the benefits of blockchain are further amplified when used alongside other technologies, such as artificial intelligence, cloud computing, and big data.

However, despite its several uses, the issue of scalability plagues blockchain adaption at a larger scale. Blockchain is still a nascent technology and lacks high-level scalability. With COVID-19 affecting most of the world, the current blockchain companies do not have the level of scalability to provide all-encompassing global-level solutions.

Furthermore, blockchain technology does not operate alone, and it needs to be configured with the operating legacy system of companies and other stakeholders. However, most legacy systems are relatively old and, therefore, do not support blockchain technology. Updating or reconfiguring a legacy system is a tedious process (both in terms of time and money), and companies may not want to tie up resources for that at the current time.

Given these drawbacks, blockchain may not be deployed at a global-scale level during this pandemic, however, its inherent benefits have made companies, authorities, and global health organizations ponder, explore, and evaluate its potential in managing such situations in the future. While the COVID-19 pandemic has caught the world largely unprepared, organizations and companies across the globe are gearing up to ensure this history is not repeated, and blockchain technology has emerged as a critical part of the solution.

by EOS Intelligence EOS Intelligence No Comments

Global Economy Bound to Suffer from Coronavirus Fever

Global economy has slowed down in response to coronavirus. Factories in China and many parts of Europe have been forced to halt production temporarily as some of the largest manufacturing hubs in the world battle with the virus. While the heaviest impact of the virus has been (so far) observed in China, global economy too is impacted as most industries’ global supply chains are highly dependent on China for small components and cheaper production rates.

China is considered to be the manufacturing and exporting hub of the world. Lower labor costs and advanced production capabilities make manufacturing in China attractive to international businesses. World Bank estimated China’s GDP in 2018 to be US$13.6 trillion, making it the second largest economy after the USA (US$20.58 trillion). Since 1952, China’s economy has grown 450 fold as compared with the growth rate of the USA economy. International trade and investment have been the primary reason for the economic growth of the country. This shows China’s strong position in the world and indicates that any disturbances in the country’s businesses could have a global effect.

On New Years’ Eve 2019, an outbreak of a virus known as coronavirus (COVID-19) was reported in Wuhan, China to the WHO. Coronavirus is known to cause respiratory illness that ranges from cough and cold to critical infections. As the virus spreads fast and has a relatively high mortality rate, the Chinese government responded by quarantining Wuhan city and its nearby areas on January 23, 2020. However, this did not contain the situation. In January 2020, WHO designated coronavirus a “public health emergency of international concern” (PHEIC), indicating that measures need to be taken to contain the outbreak. On March 11, 2020, WHO called coronavirus a pandemic with the outbreak spreading across about 164 countries, infecting more than 190,000 people and claiming 7,800+ lives (as of March 18, 2020).

Coronavirus threatening businesses in China and beyond

Businesses globally (and especially in China) are feeling the impact of coronavirus. Workers are stuck in their homes due to the outbreak. Factories and work places remain dormant or are running slower than usual. Also, the effects of coronavirus are spreading across the globe. Initially, all factory shutdowns happened in China, however, the ripple effects of the outbreak can now be seen in other parts of the world as well, especially Italy.

Automotive industry

Global automobile manufacturers, such as General Motors, Volkswagen, Toyota, Daimler, Renault, Honda, Hyundai, and Ford Motors, who have invested heavily in China (for instance, Ford Motor joined ventured with China’s state-owned Chongqing Changan Automobile Company, Ltd., one of China’s biggest auto manufacturers) have shut down their factories and production units in the country. According to a London-based global information provider IHS Markit, Chinese auto industry is likely to lose approximately 1.7 million units of production till March 2020, since Wuhan and the rest of Hubei province, where the outbreak originated, account for 9% of total Chinese auto production. While the factories are reopening slowly (at least outside the Wuhan city) and production is expected to ramp up again, it all depends on how well the outbreak is contained. If the situation drags on for few months, the auto manufacturers might face significant losses which in turn may result in limited supply and price hikes.

American, European, and Japanese automobile manufacturers, among others, are heavily dependent on components supplied from China. Low production of car parts and components in China are resulting in supply shortages for the automakers globally. UN estimates that China shipped close to US$35 billion worth of auto parts in 2018. Also, according to the US Commerce Department’s International Trade Administration, about US$20 billion of Chinese parts were exported to the USA alone in 2018. A large percentage of parts are used in assembly lines that are used to build cars while remaining are supplied to retail stores. Supply chain is crucial in a connected global economy.

Coronavirus outbreak poses a risk to the global automotive supply chain.

South Korea’s Hyundai held off operations at its Ulsan complex in Korea due to lack of parts that were supposed to be imported from China. The plant manufactures 1.4 million vehicles annually and the shutdown has cost approximately US$500 million within just five days of shutting down. However, Hyundai is not the only such case. Nissan’s plant in Kyushu, Japan adjusted its production due to shortage of Chinese parts. French automaker Renault also suspended its production at a plant in Busan, South Korea due to similar reasons. Fiat Chrysler predicts the company’s European plant could be at risk of shutting down due to lack of supply of Chinese parts.

However, very recently, automobile factories in China have started reopening as the virus is slowly getting contained in the region. While Volkswagen has slowly started producing in all its locations in China, Nissan has managed to restart three of its five plants in the country.

That being said, auto factories are facing shutdowns across the world as coronavirus becomes a pandemic. Ford Chrysler has temporarily shut down four of its plants in Italy as the country becomes the second largest affected nation after China.

Automobile supply chains are highly integrated and complex, and require significant investments as well as a long term commitment from automobile manufacturers. A sudden shift in suppliers is not easy. The virus is spreading uncontrollably across Europe now and if France and Germany are forced to follow Italy’s footsteps of shutting down factories to contain its spread, this will spell doom for the auto sector as the two countries are home to some of the biggest automobile manufacturers in the world.

Technology industry

China is the largest manufacturer of phones, television sets, and computers. Much of the consumer technologies from smartphones to LED televisions are manufactured in China. One of the important sectors in the technology industry is smartphones.

The outbreak of coronavirus is bad news for the technology sector, especially at the verge of the 5G technology roll-out. Consumers were eagerly waiting for smartphone launches supporting 5G but with the outbreak, the demand for smartphones has seen a decline. According to the China Academy of Information and Communications Technology, overall smartphone shipments in China fell 37% year over year in January 2020.

Foxconn, which is a China-based manufacturing partner of Apple, has iPhone assembling plants in Zhengzhou and Shenzhen. These plants, which make up a large part for the Apple’s global iPhone assembly line, are currently facing a shortage of workers that will ultimately affect the production levels of iPhone in these factories. According to Reuters, only 10% of workers resumed work after the Lunar New Year holiday in China. As per TrendForce, a Taiwanese technology forecasting firm, Apple’s iPhone production is expected to drop by 10% in the first quarter of 2020.

Moreover, Apple closed down all its retail stores and corporate offices in the first week of February 2020 in China in response to the outbreak. On March 13, 2020, it reopened all of its stores in China as the outbreak seems to be under control. However, while Apple seems to recover from the outbreak in China, it is equally affected by store shutdowns in other parts of the world (especially Europe). On March 11, Apple announced that all stores in Italy will be closed until further notice. Italy has been hit by the virus hard after China. The Italian government imposed a nationwide lockdown on the first week of March 2020.

On the other hand other multinational smartphone giants such as LG, Sony Mobile, Oppo, Motorola, Nokia, and many others have delayed their smartphone launches in the first quarter of 2020 due to the outbreak.

The coronavirus outbreak is more likely to be a disaster for smartphone manufacturers relying on China.

Other sectors such as LCD panels for TVs, laptops, and computer monitors are mostly manufactured in China. According to IHS Markit, there are five LCD factories located in the city of Wuhan and the capacity at these factories is likely to be affected due to the quarantine placed by the Chinese government. This is likely to force Chinese manufacturers to raise prices to deal with the shortage.

According to Upload VR, an American virtual reality-focused technology and media company, Facebook has stopped taking new orders for the standalone VR headset and also said the coronavirus will impact production of its Oculus Quest headset.

Shipping industry

In addition to these sectors, the new coronavirus has also hit shipping industry hard. All shipping segments from container lines to oil tanks have been affected by trade restrictions and factory shutdowns in China and other countries. Shipyards have been deserted and vessels are idle awaiting services since the outbreak.

According to a February 2020 survey conducted by Shanghai International Shipping Institute, a Beijing based think-tank, capacity utilization at major Chinese ports has been 20%-50% lower than normal and one-third of the storage facilities were more than 90% full since goods are not moving out. Terminal operations have also been slow since the outbreak in China. The outbreak is costing container shipping lines US$350 million per week, as per Sea-Intelligence, a Danish maritime data specialist.

According to Sea-Intelligence, by February 2020, 21 sailings between China and America and 10 sailings in the Asia-Europe trade loop had been cancelled since the outbreak. In terms of containers, these cancellations encompass 198,500 containers for the China-America route and 151,500 boxes for the Asia-Europe route.

Moreover, shutting down of factories in China has resulted in a manufacturing slowdown, which in turn is expected to impact the Asian shipping markets. European and American trade is also getting affected as the virus spreads to those continents. US retailers depend heavily on imports from China but the outbreak has caused the shipping volumes to diminish over the first quarter.

The USA is already in the middle of a trade war with China that has put a dent in the imports from China. National Retail Federation (world’s largest retail trade association) and Hackett Associates (US based consultancy and research firm) projects imported container volumes at US seaports is likely to be down by 9.5% in March 2020 from 2019. The outbreak is heavily impacting the supply chains globally and if factory shutdowns continue the impact is more likely to be grave.


Read our other Perspectives on US-China tensions: Sino-US Trade War to Cause Ripple Effect of Implications in Auto Industry and Decoding the USA-China 5G War


Other businesses

In addition to the auto, technology, and shipping industries, other sectors are also feeling the heat from the outbreak. Under Armour, an American sports clothing and accessories manufacturer, estimated that its revenues are likely to decline by US$50-60 million in 2020 owing to the outbreak.

Disney’s theme parks in California, Shanghai, Tokyo, and Hong Kong have been shut down due to the outbreak and this is expected to reduce its operating income by more than US$175 million by second quarter 2020.

Further, IMAX, a Canadian film company, has postponed the release of five films in January 2020, due to the outbreak.

Several fast food chains have been temporarily shut down across China and Italy, however, most of them have opened or are in the process of reopening in China as the outbreak is slowly coming under control there. While the global fast food and retail players have limited exposure in China, they are suffering huge losses in Europe, especially Italy. The restaurant sector is severely impacted there, where all restaurants, fast food chains, and bars have been shut down temporarily till April 3 in an attempt to contain the outbreak.

Another significantly affected industry is the American semiconductor industry as it is heavily connected to the Chinese market. Intel’s (a US-based semiconductor company) Chinese customers account for approximately US$20 billion in revenue in 2019. Another American multinational semiconductor and telecommunications equipment company, Qualcomm draws approximately 47% of its revenue from China sales annually. The outbreak is making its way through various industries and global manufacturers could now see how much they have become dependent on China. Although the virus seems to be getting under control as days pass, the businesses are not yet fully operational. Losses could ramp up if the virus is not contained soon.

Global Economy Bound to Suffer from Coronavirus Fever by EOS Intelligence

 

Housebound consumers dealing with coronavirus

Since the virus outbreak, people across many countries are increasingly housebound. Road traffic in China, Italy, Iran, and other severely affected countries has been minimized and public places have been isolated. People are scared to go out and mostly remain at home. This has led local businesses such as shopping malls, restaurants, cinemas, and department stores to witness a considerable slowdown, while in some countries being forced to shut down.

TV viewing and mobile internet consumption on various apps have increased after the outbreak. According to QuestMobile, a research and consultancy firm, daily time spent with mobile internet rose from 6.1 hours in early January 2020 to 6.8 hours during Lunar New Year (February 2020).

While retail outlets and other businesses are slower, people have turned to ordering products online. JD.com, a Chinese online retailer, reported that its online grocery sales grew 215% (year on year) to 15,000 tons between late January and early February 2020. Further, DingTalk, a communication platform developed by Alibaba in 2014, was recorded as the most downloaded app in China in early February 2020.

EOS Perspective

International businesses depend heavily on Chinese factories to make their products, from auto parts to computer and smartphone accessories. The country has emerged as an important part in the global supply chain, manufacturing components required by companies globally. The coronavirus outbreak has shaken the Chinese economy and global supply chains, which in turn has hurt the global economy, the extent of which is to be seen in the months to come. Oxford Economics, a global forecasting and analysis firm, projected China’s economic growth to slip down to 5.6% in 2020 from 6.1% in 2019, which might in turn reduce the global economic growth by 0.2% to an annual rate of 2.3%.

A similar kind of outbreak was seen in China in late 2002 and 2003, with SARS (Severe Acute Respiratory Syndrome) virus. China was just coming out of recession in 2003 and joined the World Trade Organization, attaining entrance to global markets with its low cost labor and production of cheaper goods. The Chinese market was at its infancy at that time. As per 2004 estimates by economists Jong-Wha Lee and Warwick J. McKibbin, SARS had cost the global economy a total of about US$40 billion. After SARS, China suffered several months of economic retrenchment.

The impact of coronavirus on Chinese as well as global economy seems to be much higher than the impact of SARS, since COVID-19 has spread globally, while China has also grown to be the hub for manufacturing parts for almost every industry since the SARS outbreak. In 2003, China accounted for only 4% of the global GDP, whereas in 2020, its share in the global GDP is close to 17%.

Currently, the key challenge for businesses would be to deal with and recover from the outbreak. On the one hand, they need to protect their workers safety and abide by their respective governments’ regulations, and on other hand they need to safeguard their operations under a strained supply chain and shrunken demand.

In the current landscape, many businesses in China have reopened operations but the outbreak is rapidly spreading to other parts of the world (especially Europe and the USA), where it is impacting several business as well as everyday lives. The best thing for manufacturing companies in this scenario is to re-evaluate their inventory levels vs revised demand levels (which may differ from industry to industry), and consider a short-term re-strategizing of their global supply chains to ensure that raw materials/components or their alternates are available and accessible – bearing in mind their existing production capability with less workers and customer needs during this pandemic period.

With the rapid spread of the virus, it seems that the outbreak is likely to cause considerable damage to the global economy (both in terms of production levels as well as psychological reaction on stock markets), at least in the short term, i.e. next 6 months. However, many experts believe that the situation should soon start coming under control at a global level. For instance, some experts at Goldman Sachs, one of the world’s largest financial services companies, believe that while this pandemic will bring the lowest growth rate of the global GDP in the last 30 years (expected at 2% in 2020), it does not pose any systematic risks to the world’s financial system (as was the case during the 2008 economic crisis).

Having said that, it is difficult to estimate what real impact the coronavirus will have on the global economy yet, and if opinions such as Goldman Sachs’ are just a way to downplay the situation to keep the investors calm. It is more likely to depend on how long the virus continues to spread and linger and how effectively do governments around the world are able to contain it.

by EOS Intelligence EOS Intelligence No Comments

Indian Medical Device Rules: Prospects among Ordeals for Manufacturers

337views

India’s recent notification on regulating medical devices is another step on the government’s behalf to raise healthcare standards in the country. These regulations have implications for all stakeholders in the medical device industry, including medical device manufacturers and importers. The actual impact of these regulations will only be felt in next four to five years, once the regulatory regime comes into effect. However, based on some of the specific regulatory requirements, it is not difficult to ascertain what lies ahead for manufacturers and importers.

In 2019, Indian medical device industry was worth US$9 billion and is expected to reach US$14 billion by 2025. India imports nearly 70% of its medical devices, particularly high-end medical equipment including cancer diagnostics, medical imaging, ultrasonic scans, and PCR technologies, among others, the demand for which is met by multinational companies. The key medical devices that India imports include electronics and equipment – 53%, consumables – 14%, surgical instruments – 10%, IVD reagents – 9%, implants – 7%, and disposables – 7%. Domestic medical device market comprises mainly of small and medium medical device manufacturers with a large portion with turnover of less than US$ 1.3 million.

New Medical Device Rules – Prospects among Ordeals for Manufacturers

For many years, Indian medical device industry has dealt with a lot of challenges owing to lack of regulations. However, with the new medical device regulatory system, the scenario is expected to improve and reduce concerns among the device manufacturers around the lack of standardization and best practices. We discussed the new regulations of medical devices and their impact on various stakeholders in the healthcare sector in our article Indian Medical Device Rules: a Step towards a Better Future in February 2020.

Impact of new regulations on device manufacturers

Once the new regulations come into play, all manufacturers will have to maintain quality standards to avoid any punitive action by the regulator, as compromise on quality could result in suspension or cancellation of their license disabling them for doing business in the Indian market.

In order to assure quality, manufacturers will have to focus on quality management best practices to meet the quality objectives. This would mean creation of quality manual, documentation and execution of the quality-related procedures, and maintenance of quality-related records. Establishment of a quality assurance unit and installation of IT system to support quality-related processes will be the two key steps towards achieving quality objectives.

However, all this will not be easy to achieve from a financial viewpoint for manufacturers, considering majority of players are small and medium-sized. As an indicator, the average cost per year of having a five member quality assurance team in place can be anything between US$ 27,000 to US$ 34,000, which would account for about 2% of the annual turnover for a medical device company reporting US$ 1.3 million in sales (65% of the Indian medical device companies earn less than that). This would be a significantly high expense and, if incurred, is likely to be passed on to consumers.

The amount of expenditure on IT-related infrastructure for implementation on QA would depend primarily on two things. Firstly – the kind of medical device being manufactured (while some medical devices work on the principle of embedded software others do not require software-related quality checks, such as syringes, masks, head covers, etc.). Secondly – the extent to which a manufacturer wants to invest in IT (based on global standards, it would come to around 15-20% of annual IT budget).

Spending on IT infrastructure should be considered as a long-term investment, considering this would be required not only to ensure compliance on quality assurance but also to be done if the company wants to compete in export markets. In any case, the manufacturer would spend less than 1% of its annual revenue on IT for achieving quality objectives.

The government also wants all the device manufacturers to be compliant with Good Manufacturing Practices (GMP), laid down under the Drugs and Cosmetics Act of 1940, and currently introduced as a self-audit or self-assessment activity.

Getting a GMP certification (that confirms a firm uses quality assurance approach to ensure that products are consistently produced and controlled to the quality standards appropriate to their intended use and as required by the marketing authorization) for a single device is likely to cost less than US$ 135 for the manufacturer. Considering a manufacturer produces a range of devices, most of the small device manufacturing units do not follow the voluntary practice of attaining a GMP certificate citing certification costs (for the entire range of devices manufactured) and renewal fees (for each device after a certain number of years) to be adding to their overall expenses, but not significant enough to be passed on to customers. However, on the positive side, if companies were to get GMP certification, it would make their products compliant as per international standards making them more competent in the export market.

Road ahead for importers

Imports constitute a sizeable part of the medical device market in India. It is easier for importers now to place their products in the Indian market considering that there is a streamlined regulatory standard in place highlighting regulatory approval procedures to be followed in India, as against only the FDA (US Food and Drug Administration) or CE (Conformity Europé) approved products that were allowed to enter the market earlier. This will limit the importers’ cost required for approvals to market in India, rather than requiring marketing approval from international agencies.

Registration fees, license fees, and all duties levied for importing devices in India have been explained paving a clearer pathway for importers to operate in the market. Additionally, a list of forms specific for import purposes, required to apply for medical device approval has also been revealed.

All these practices and clarifications from the regulatory bodies have made it more convenient for manufacturers to import products. Clarity on import-related regulations is expected to make it easier for the importers to bring products to India thereby creating more challenges for the domestic players; however, it is too early to say how the market will evolve and which product segments will witness intensified competition in the next four to five years.

EOS Perspective

From the healthcare industry’s standpoint, governments’ step to ensure that medical devices available in the market meet quality standards in the future is positive and welcomed as it brings assurance of superior quality products for the people using them.

It is the small and medium sized enterprises that make up the low priced, high volume market segment of the medical device industry in India, that will need to make major operational changes and keep a close watch on the cost of compliance on quality aspect. The added cost aspect, if encountered, for developing high-quality products is most likely to hit them the hardest (especially the micro units and small-scale manufacturers) leaving them with no option but to pass on the increased cost onto the consumers. Larger players (5% manufacturers) are likely to remain practically unaffected. Nevertheless, it will be interesting to watch how these regulations shape the operations of device manufacturing companies functioning in India.

by EOS Intelligence EOS Intelligence No Comments

Indian Medical Device Rules: a Step towards a Better Future

1.2kviews

Healthcare sector in India is witnessing a churn as a result of the government’s attempt to make healthcare more affordable and to promote domestic healthcare industry. Recent medical devices-related notification is also part of the government’s vision for a better managed healthcare market, though it has ignited a debate about the future of medical device industry. There is hope as well as an apprehension among the stakeholders, as they wait for the notification to become fully effective in next three years.

The Notification

In the second week of February 2020, India’s Ministry of Health & Family Welfare announced that all medical devices sold in the country would be treated as drugs from April 1, 2020 onward and would be regulated under the Drugs and Cosmetics Act of 1940. To understand the context of this announcement, we will have to turn the clock back by about three years.

In 2017, Indian government announced Medical Device Rules-2017 (MDR-17) – a set of rules, which included:

  • Classification of medical devices into four classes (A, B, C, and D), based on the associated risks, i.e. low, low moderate, moderate high, and high risk devices
  • Procedures, including the required documents, for registration and regulatory approval of devices
  • Details regarding manufacturing, quality audit, import/export, and labelling-related requirements

There was no risk-based classification of medical devices prior to 2017 and it was also difficult to introduce new products, as the approval procedures were undefined. In case of imports, only the products approved by Conformité Européene (CE) and the US Food and Drug Administration were allowed. MDR-17 were expected to unlock the potential of Indian medical device market by introducing a well-defined regulatory regime, while assuring quality products to consumers.

Under the rules, a medical device had to be notified as ‘drug’ under the Drugs and Cosmetics Act to be regulated by Central Drugs Standard Control Organization (CDSCO):

  • Initially, 15 categories of medical devices (syringes, stents, catheters, orthopedic implants, valves, etc.) were notified as drugs
  • In 2019, the government notified (effective April 2020) another eight categories – MRI equipment, PET, bone marrow separators, dialysis machines, CT scan and defibrillators, etc., thereby placing a total of 23 categories of medical devices under drugs

The February 2020 notification, called Medical Devices (Amendment) Rules, 2020, has made the entire range of medical devices available in India (about 5,000 different types) under the ambit of drugs, as opposed to 23 categories before the announcement. The compliance requirements are to be enforced in a phased manner, with 30 months given to low and low moderate risk devices and 42 months for moderate high risk and high risk devices.

Indian Medical Device Rules - A Step Towards Better Future by EOS Intelligence

The Concerns

The February notification has drawn reactions, most of them positive, regarding the future from those associated with the industry. There are some concerns as well, such as:

  • What if the device rules accord unrestrained power to drug inspectors due to medical devices being regulated under the Drugs and Cosmetics Act?
  • Would the cost of quality compliance be substantial for device manufacturers?
  • Would the government resort to price control of medical devices, as it does in case of drugs?

Though the concerns are valid, they are unlikely to cause immediate disruption, as there would be at least 30 months (time given for enforcement of compliance for class A and B devices) after the notification date for the rules to start impacting the industry. An increased cost of compliance is a possibility, however, it would be found across the industry and should not impact only specific companies or a specific product segment.

At present, for price control purpose, four medical devices – cardiac stents, drug-eluting stents, condoms, and intrauterine devices – are in the national list of essential medicines that can be further expanded. However, the expansion cannot be directly linked with the medical device rules, which were primarily framed to ensure a better operating environment for industry players. For instance, from the initial list of 15 categories (i.e. about 350 devices) under MDR-17, only cardiac stents and knee implants were brought under price control (condoms and intrauterine devices were already under the price control regime when MDR-17 were introduced).

Impact on stakeholders

Indian medical device industry is expected to evolve under medical device rules (including the February 2020 notification). Even if the impact of the rules is speculative at present, it is interesting to take a look at their potential effect on key stakeholders in the coming years. While the patients appear to be the greatest beneficiaries due to improvement in quality of treatment, wholesalers and retailers of medical devices may have to prepare for a more demanding operating environment.

Indian Medical Device Rules - A Step Towards Better Future by EOS Intelligence


Read more on the implications for all stakeholders in the medical device industry in India in our article: Indian Medical Device Rules: Prospects among Ordeals for Manufacturers


EOS Perspective

Decision to notify all medical devices as drugs for regulatory purpose was a result of a long consultative process, which involved various stakeholders and experts, including Drugs Technical Advisory Board (DTAB). The industry was expecting such an announcement, as the government had previously shown its intent to do so. Hence, the February 2020 notification was only part of the process that was initiated in 2017 with the introduction of medical device rules. The notification is a show of intent by the government of India towards building a better regulated industry offering more quality products, thereby raising the standards of healthcare in the country. The phased implementation of rules is likely to provide enough time for the industry to adapt according to new regulatory requirement.

Any comment on the future of Indian medical device industry on account of probable price control measures would be purely speculative, as it is difficult to predict the outcome of such steps at present. The case in point is of stents, which were brought under price control regime in 2017. There were fears that the move might kill the sector; however, the stent-related procedures have not witnessed decline despite the multinational companies taking their high end products off the shelf, indicating that the domestic manufacturers have been able to cater to demand.

While the end-users can view the medical device rules as a means to provide better care to them, the device manufacturers can also look for positives, especially when the rules are seen along with the government’s other efforts, such as Make in India initiative, to boost domestic manufacturing. Device classification and the associated regulatory requirements have removed ambiguity for the manufacturers of medical devices in India. This clarity might also fast track investments in the sector, as the potential investors now know what to expect while operating in India. Under Make In India, up to 100% foreign direct investment is permitted in medical devices through automatic route.

by EOS Intelligence EOS Intelligence No Comments

EU New Medical Device Regulations: Cause of Ache for Medical Device Players

974views

Circling around patient care and improving overall healthcare services, the European Parliament has set new requirements for medical device and in vitro diagnostic manufacturers that distribute products in the EU. However, medical device manufacturers have realized that they are bound to face many challenges in order to make their products market-ready, not to forget the gigantic task of implementing new protocols in a timely manner, which will not be easy.

Need for a comprehensive updated medical device regulatory system

EU’s Medical Device Regulation (MDR) and In Vitro Diagnostic Medical Devices Regulation (IVDR) were made official in May 2017, with transition period of three years (fully applicable from May 26, 2020) for the former and five years (fully applicable from May 26, 2022) for the latter. These regulations will replace EU’s previous directives: Medical Device Directive (MDD), Active Implantable Medical Devices Directive (AIMDD), and In Vitro Diagnostic Directive (IVDD).

The need for new regulations of medical devices in EU arose from the growing demand for technologically advanced medical products which necessitated more stringent monitoring of these devices to ensure a high level of efficacy and safety among patients.

Unlike earlier version of the regulations where the main focus revolved around the pre-approval stage of medical device manufacturing, the new regulatory guidelines promote an overall product-life cycle approach, focusing on both device safety and performance.

Enhanced supervision, easy documentation of devices, more stringent clinical evidence requirement, and increased supervision on part of authorities providing medical device certifications are some of the key changes in MDR as compared to the EU’s previous directives.

Bumpy road ahead for medical device manufacturers

Reclassifying existing product line-up

Based on the risk factor, changes have been made to the way medical devices are classified. Under MDR, the number of classification rules has expanded from 18 to 22 intensifying the task of product re-classifications by the manufacturer.

For instance, products using software for monitoring purposes being implanted in the body has been reclassified to higher-risk class (from Class I to Class III) which would now require conformity assessment by a notified body (NB – an organization that assess the conformity of medical devices before they are placed on the market), unlike earlier, when Class I products did not require assessment via a NB. This is going to burden players with increased operational costs; thus, it is imperative that the manufacturers familiarize themselves with the classification changes and study the impact on their product portfolio.

New products are also being added to the list of medical devices that earlier were not part of the medical device regulatory framework. For instance, products manufactured utilizing human tissues or cells and devices incorporating nanomaterial, under new regulations, will be considered medical devices. Manufacturers of such products have work cut out for them – from conducting clinical investigations, preparing technical documentation and evaluation processes, to product certification. Though such products could only form a very small percentage of the company’s product range, the task to make them available in the market is great, especially under current circumstances.

Manufacturers who do not comply with the new regulations will no longer be able to market their products in Europe. Thus, a robust strategy in terms of resource allocation, time management, and budget is an absolute must for manufacturers to make this transition possible.

EU MDR Cause of Ache for Medical Device Players - EOS Intelligence

Distress over notified bodies

Strict parameters are also being applied on NBs. Since all devices will require new certification from a NB, only designated NBs will be able to certify a device. The designation process is a complex procedure as it involves audits and corrective actions (once a NB expresses interest). However, while the medical device manufacturers have been in the process of switching to newer protocols since mid-2017, the first designated NB (BSI United Kingdom, the national standards body of the UK) was announced in January, 2019, almost 18 months after the regulations were announced and 14 months into the formally started designation process.

Such time-consuming process raises concern among medical device companies about the ability to complete the necessary conformity assessments within the allotted time. The huge task of recertifying medical devices with only a handful of designated NBs is a cause of worry for companies, as it could potentially result in significant backlogs as the last date approaches. However, there is only so much companies can do – even though they are proactive to comply with the new regulations much ahead of the deadline, poor process planning and lack of supporting bodies (notified bodies in this case) results in a long halt for these players.

The companies are heavily dependent on NBs for auditing and product certification, and the insufficient number of designated bodies adds to the risk of many devices being non-compliant according to new regulations. As of May 2019, less than 40 NBs have filed application for designation procedure (out of 58 designated NBs under the directives); only two have actually received a designated status – BSI UK and Germany based TÜV SÜD Product Service GmbH Zertifizierstellen (certification received in May 2019). With very little time at hand to reassess and rectify issues (if any), this could jeopardize the product availability in the market, resulting in not only risking the patients’ life (due to non-availability) but also in huge financial losses for the players.

Detailed clinical evaluation of medical devices

Owing to reclassification of product categories, many devices will require changes to their existing clinical evaluation reports, another challenge for medical device manufacturers. Manufacturers that have not previously been required to perform clinical testing will have to do so now. For instance, mechanical heart valve sizers will be moved up from Class I to Class III, and unlike in MDD where clinical evaluation was based on literature analysis, new evaluation of valve sizers will require clinical investigation. This will require a huge deal of additional time, money, and expertise, further burdening the device manufacturers.

Medical devices already in the market that remain untouched by the reclassification criteria will still require reassessment of clinical data. If the data do not meet the new requirements, devices will need to undergo additional testing to be recertified, increasing the expense for manufacturers.

MDR also calls for inclusion of risk management within the clinical evaluation expecting clinical risks to be addressed in clinical investigations and evaluation studies – adding another task to the long list of activities to be accomplished before MDR fully rolls out.


Explore our other Perspectives on medical devices markets


Comprehensive demonstration of equivalence data

Unlike MDD, where device manufacturers were able to use clinical data of an equivalent device for their own product registration, under MDR, equivalence is going to be less accepted, particularly for higher risk devices.

There are two ways out – manufacturers can either conduct their own trials not having to deal with the equivalence commotion or they can demonstrate that they have access to the equivalent device (with respect to technical and clinical properties) data. The latter is highly unlikely to happen considering equivalent device would typically belong to a competitor unwilling to grant such access. Thus, with stern requirements for comparative evaluations, more effort, planning, money, and resources will be needed for device manufacturers to demonstrate product safety and performance.

As new medical devices are developed, multiple small incremental improvements (minor changes in design, addition or subtraction of small hardware parts such as bolts or screws) happen over time. Once the device is already in the market, it is practically impossible to conduct a re-trial to gain approval for such small changes. An expected solution to this would be a provision to accept such minor changes through pre-clinical evidence or prior trial results. However, with equivalence testing being reduced drastically under MDR, unless a solution for such cases is offered, manufacturers will have to conduct re-trial and re-document everything, which would result in significantly increased cost. Another issue that could arise from such situations is the reduction in R&D activities inclined towards product improvement.

Trouble galore for SME’s

While making amendments and prioritizing to comply with new regulations seems to be the top most priority for medical and diagnostic device manufacturers, it seems SMEs will be dramatically more impacted than large players – in Europe, a small-sized company employs less than 50 people and has a turnover of less than or equal to €10 million while a medium-sized company employs less than 250 people and has a turnover of less than or equal to €50 million. Owing to the increase in cost, time, and resources associated with the process, the new regulations may put smaller companies under pressure, possibly resulting in altering (such as merging with or being acquired by larger companies) the European medical device market structure, currently dominated by SMEs – there are nearly 27,000 medical technology companies in EU, 95% of which are SMEs.

SMEs also need to be more vigilant when it comes to being associated with a designated NB as not all currently functioning NBs are expected to get a designated status. With their already dwindling numbers married with an increased demand for their services, once the new regulations roll out, it is quite possible that small manufacturers are orphaned since NBs could be partial towards larger players and prioritize them over other small and medium players.

Smaller players will not only have to hire additional personnel for dealing with regulatory issues but also employ clinical trials specialists (for documenting insights to be presented and approved by the NB) for launching products in the market which means higher costs. Adjusting budgets to keep costs under control would hamper other critical business operations, e.g. reduce R&D activities or cut the number of products being launched in the market.

As a step to overcome these issues, players with limited financial resources should strategically study their product portfolio to determine which products are worth investing in for MDR compliance. For doing this, they should lay out a detailed plan for each product and decide whether to remediate, transition, or divest.

It is also advised that SMEs should devise a clear step-by-step approach plan to ensure compliance. As an alternative to hiring transition specialists, they could engage employees from various functions within the organization to take responsibility for specific processes thus keeping costs in check.

EOS Perspective

The changes and revisions required to be carried out under MDR are company-wide and require significant investment to plan and execute. This will lead to players devising a business strategy based on assessing risk associated with product portfolio (whether some products need to be pulled out from the market and what effect it would have on future revenue) or looking for acquisition partners. Based on these decisions, the medical device market topography in EU is expected to see some major changes in the coming years – small companies looking for partners to get acquired or for new partnership with a service provider (specializing in regulations compliance). This will also result in organizational restructuring, revamping design processes, and systems implementation.

Companies have to make crucial decisions around the product portfolio. For some of the already existing products, if reclassified, the cost of compliance could be much higher than actual market returns. In such cases, manufacturers may be compelled to pull away such products from the market resulting in high healthcare costs and ultimately burdening the patients, who (theoretically) form the center point of the MDR. Though this is unlikely to happen at a large scale, since there are always alternative products available, it cannot be denied that this may be a major loophole in MDR requiring immediate attention.

Since SMEs drive the EU medical device market, as an immediate consequence, MDR is not likely to have any positive effect on these players other than distorting their business operations. However, it can only be anticipated that, with time, MDR may adapt and amend to offer some relaxation in provisions especially for small and medium-sized players. Nonetheless, MDR also brings an opportunity for such players to audit their current offerings and come out with an enhanced product portfolio, which could be an opportunity to be capitalized on in the distant future.

Modifications being made in the functioning of NBs are also likely to have an impact on the device manufacturers. For high risk devices, manufacturers may expect deeper scrutiny of design records and data files leading to providing more credentials, in case any query arises. This, along with long wait time for product review (due to reduction in the number of designated NBs) and limited availability of resources (again on account of NBs), could lead to unknown delays for obtaining product re-certification. Thus, companies need to chalk out their market strategies very effectively and be prepared to address any concern that rises during product reviews.

The aim of implementing new regulations is to bring a transparent and robust regulatory framework for medical devices. However, there is no assurance that the new regulations are completely accurate and will apply seamlessly to live case scenarios. Therefore, once implemented, there is a possibility that MDR may see revisions in the initial months of coming into action.

These changes, though certainly positive from a healthcare point of view, are enormous. Transitioning to meet the new standards within the stipulated time frame is challenging for manufacturers. Not adapting to the changes is not a choice for manufacturers as non-compliance could result in losing license to operate in the EU market. And for players fearing stringent scrutiny in the future, operating in the European healthcare market will not be easy once the new regulations come into force.

by EOS Intelligence EOS Intelligence No Comments

Infographic: Google’s Tech Initiatives Transforming Industries

2.5kviews

Google, beyond being the leading search engine worldwide, is also one of the largest and most innovative companies. Through its innovations, Google along with other Alphabet companies (parent company of Google and its subsidiaries) is transforming various industries by empowering them with technology. Its solutions have reached diverse industries such as agriculture, manufacturing, healthcare, energy, and fishing, among others.

Innovation has always been at the core of Google’s strategy and it is bringing artificial intelligence (AI), machine learning, augmented reality, robotics, among others to shape various industries. It has introduced surgical robots to medicine, Google glass to manufacturing, AI-enabled programs to energy, among various other solutions that are revolutionizing these industries. We are taking a look at where Google has already left its innovative footprint.

Google’s Tech Initiatives Transforming Industries - EOS Intelligence


Alphabet companies included in the infographic:
Verily – Alphabet’s key research organization dedicated to the study of life sciences
Verb Surgical – A joint venture between Johnson & Johnson and Verily
DeepMind – Alphabet’s artificial intelligence company
Global Fishing Watch – An organization founded by Google in partnership with Oceana and SkyTruth
Top